1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 1.52 trang 33 sách bài tập toán 12 - Kết nối tri thức

Giải bài 1.52 trang 33 sách bài tập toán 12 - Kết nối tri thức

Giải bài 1.52 trang 33 SBT Toán 12 Kết nối tri thức

Chào mừng bạn đến với lời giải chi tiết bài 1.52 trang 33 sách bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Chúng tôi luôn cố gắng cung cấp những lời giải chính xác và đầy đủ nhất, đồng thời giải thích rõ ràng từng bước để bạn có thể hiểu sâu sắc về bài toán.

Hàm số nào sau đây nghịch biến trên tập xác định của nó? A. (y = - {x^3} + 3{x^2} + 9x). B. (y = 2x + frac{1}{{x + 2}}). C. (y = frac{{2024}}{{{e^x}}}). D. (y = 2024ln x).

Đề bài

Hàm số nào sau đây nghịch biến trên tập xác định của nó?

A. \(y = - {x^3} + 3{x^2} + 9x\)

B. \(y = 2x + \frac{1}{{x + 2}}\)

C. \(y = \frac{{2024}}{{{e^x}}}\)

D. \(y = 2024\ln x\)

Phương pháp giải - Xem chi tiếtGiải bài 1.52 trang 33 sách bài tập toán 12 - Kết nối tri thức 1

Tính đạo hàm các hàm, nếu đạo hàm đó âm trên tập xác định thì hàm nghịch biến.

Lời giải chi tiết

Đáp án: C.

Ta lần lượt tính đạo hàm của từng đáp án

+ Xét A:

Tập xác định \(\mathbb{R}\).

Ta có \(y' = - 3{x^2} + 6x + 9\) khi đó \(y' = 0 \Leftrightarrow - 3{x^2} + 6x + 9 = 0 \Leftrightarrow x = 3\) hoặc \(x = - 1\).

Do đó đạo hàm sẽ đổi dấu trên \(\mathbb{R}\). Vậy hàm số không nghịch biến trên \(\mathbb{R}\). Suy ra A sai.

+ Xét B:

Tập xác định \(\mathbb{R}\backslash \left\{ { - 2} \right\}\).

Ta có \(y' = 2 - \frac{1}{{{{\left( {x + 2} \right)}^2}}}\) khi đó \(y' = 0 \Leftrightarrow 2 - \frac{1}{{{{\left( {x + 2} \right)}^2}}} = 0 \Leftrightarrow x = - 2 \pm \frac{1}{{\sqrt 2 }}\).

Do đó đạo hàm sẽ đổi dấu trên \(\mathbb{R}\). Vậy hàm số không nghịch biến trên \(\mathbb{R}\). Suy ra B sai.

+ Xét C:

Tập xác định \(\mathbb{R}\).

Ta có \(y' = \frac{{ - 2024}}{{{e^x}}} < 0\) với mọi \(x\).Do đó hàm số nghịch biến trên \(\mathbb{R}\). Suy ra C đúng.

Giải bài 1.52 trang 33 SBT Toán 12 Kết nối tri thức: Tổng quan

Bài 1.52 trang 33 sách bài tập Toán 12 Kết nối tri thức thuộc chương trình học về Đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể.

Nội dung bài 1.52 trang 33 SBT Toán 12 Kết nối tri thức

Bài 1.52 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của một hàm số cho trước, có thể là hàm số đơn giản hoặc hàm số phức tạp.
  • Tìm đạo hàm cấp hai: Tính đạo hàm bậc hai của một hàm số.
  • Ứng dụng đạo hàm để giải phương trình: Sử dụng đạo hàm để tìm nghiệm của phương trình.
  • Khảo sát hàm số: Sử dụng đạo hàm để xác định khoảng đồng biến, nghịch biến, cực trị của hàm số.

Lời giải chi tiết bài 1.52 trang 33 SBT Toán 12 Kết nối tri thức

Để giải bài 1.52 trang 33 SBT Toán 12 Kết nối tri thức, chúng ta cần thực hiện các bước sau:

  1. Xác định hàm số: Xác định rõ hàm số cần tính đạo hàm hoặc khảo sát.
  2. Áp dụng quy tắc tính đạo hàm: Sử dụng các quy tắc tính đạo hàm đã học để tính đạo hàm của hàm số.
  3. Rút gọn biểu thức: Rút gọn biểu thức đạo hàm để có được kết quả cuối cùng.
  4. Kiểm tra lại kết quả: Kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa (giả định bài 1.52 là tính đạo hàm của hàm số y = x3 + 2x2 - 5x + 1):

Ta có:

y' = 3x2 + 4x - 5

Mẹo giải bài tập đạo hàm Toán 12

  • Nắm vững các quy tắc tính đạo hàm: Đây là nền tảng để giải quyết mọi bài tập về đạo hàm.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để làm quen với các dạng bài và rèn luyện kỹ năng.
  • Sử dụng máy tính bỏ túi: Máy tính bỏ túi có thể giúp bạn tính toán nhanh chóng và chính xác.
  • Kiểm tra lại kết quả: Luôn kiểm tra lại kết quả để đảm bảo tính chính xác.

Tài liệu tham khảo hữu ích

Để học tốt môn Toán 12, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12
  • Sách bài tập Toán 12
  • Các trang web học Toán trực tuyến
  • Các video bài giảng Toán 12

Kết luận

Hy vọng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 1.52 trang 33 SBT Toán 12 Kết nối tri thức một cách hiệu quả. Chúc bạn học tập tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN