Chào mừng các em học sinh đến với lời giải chi tiết bài 1.3 trang 9 sách bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ cung cấp đáp án chính xác, dễ hiểu cùng với phương pháp giải chi tiết để giúp các em nắm vững kiến thức và tự tin làm bài tập.
Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp tài liệu học tập chất lượng và hỗ trợ giải đáp mọi thắc mắc.
Xét tính đơn điệu và tìm các cực trị (nếu có) của các hàm số sau: a) (y = x + frac{1}{x}); b) (y = frac{x}{{{x^2} + 1}}).
Đề bài
Xét tính đơn điệu và tìm các cực trị (nếu có) của các hàm số sau:
a) \(y = x + \frac{1}{x}\);
b) \(y = \frac{x}{{{x^2} + 1}}\).
Phương pháp giải - Xem chi tiết
Ý a:
- Tìm tập xác định của hàm số.
- Tính đạo hàm, tìm các điểm mà tại đó đạo hàm bằng \(0\) hoặc đạo hàm không tồn tại.
- Lập bảng biến thiên của hàm số.
- Từ bảng biến thiên suy ra các khoảng đồng biến, nghịch biến, cực trị của hàm số.
Ý b:
- Tìm tập xác định của hàm số.
- Tính đạo hàm, tìm các điểm mà tại đó đạo hàm bằng \(0\).
- Lập bảng biến thiên của hàm số.
- Từ bảng biến thiên suy ra các khoảng đồng biến, nghịch biến, cực trị của hàm số.
Lời giải chi tiết
a) Tập xác định: \(\mathbb{R}\backslash \left\{ 0 \right\}\)
Ta có \(y' = 1 - \frac{1}{{{x^2}}} = \frac{{{x^2} - 1}}{{{x^2}}}\). Khi đó \(y' = 0 \Leftrightarrow \frac{{{x^2} - 1}}{{{x^2}}} = 0 \Leftrightarrow {x^2} - 1 = 0 \Leftrightarrow x = - 1\) hoặc \(x = 1\).
Lập bảng biến thiên của hàm số:

Từ bảng biến thiên, ta có:
Hàm số đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {1; + \infty } \right)\).
Hàm số nghịch biến trên các khoảng \(\left( { - 1;0} \right)\) và \(\left( {0;1} \right)\).
Hàm số đạt cực đại tại \(x = - 1\) và \({y_{CĐ}} = y\left( -1 \right) = -2\).
Hàm số đạt cực tiểu tại \(x = 1\) và \({y_{CT}} = y\left( 1 \right) = 2\).
b) Tập xác định: \(\mathbb{R}\)
Ta có \(y' = \frac{{1 \cdot \left( {{x^2} + 1} \right) - x \cdot 2x}}{{{{\left( {{x^2} + 1} \right)}^2}}} = \frac{{ - {x^2} + 1}}{{{{\left( {{x^2} + 1} \right)}^2}}}\).
Khi đó \(y' = 0 \Leftrightarrow \frac{{ - {x^2} + 1}}{{{{\left( {{x^2} + 1} \right)}^2}}} = 0 \Leftrightarrow - {x^2} + 1 = 0 \Leftrightarrow x = - 1\) hoặc \(x = 1\).
Lập bảng biến thiên của hàm số:

Từ bảng biến thiên, ta có:
Hàm số đồng biến trên khoảng \(\left( { - 1;1} \right)\).
Hàm số nghịch biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {1; + \infty } \right)\).
Hàm số đạt cực đại tại \(x = 1\) và \({y_{CĐ}} = y\left( { - 1} \right) = \frac{1}{2}\).
Hàm số đạt cực tiểu tại \(x = - 1\) và \({y_{CT}} = y\left( { - 1} \right) = - \frac{1}{2}\).
Bài 1.3 trang 9 sách bài tập Toán 12 Kết nối tri thức thuộc chương 1: Giới hạn. Dạng bài tập này thường tập trung vào việc tính giới hạn của hàm số tại một điểm, sử dụng các định nghĩa và tính chất của giới hạn. Việc nắm vững kiến thức về giới hạn là nền tảng quan trọng để học tốt các chương tiếp theo của môn Toán 12.
Bài 1.3 thường bao gồm các câu hỏi và bài tập sau:
Để giúp các em hiểu rõ hơn về cách giải bài 1.3 trang 9, chúng ta sẽ đi vào giải chi tiết từng câu hỏi:
Giả sử câu a yêu cầu tính lim (x→2) (x2 - 4) / (x - 2)
Giả sử câu b yêu cầu tính lim (x→∞) (2x + 1) / (x - 3)
Để giải tốt các bài tập về giới hạn, các em cần:
Tusach.vn cung cấp đầy đủ lời giải chi tiết các bài tập trong sách bài tập Toán 12 Kết nối tri thức, cùng với các tài liệu học tập hữu ích khác như lý thuyết, công thức, đề thi thử. Hãy truy cập tusach.vn để học tập hiệu quả và đạt kết quả cao trong môn Toán 12!
| Chương | Nội dung chính |
|---|---|
| 1 | Giới hạn |
| 2 | Hàm số liên tục |
| 3 | Đạo hàm |
| Đây chỉ là một phần nhỏ trong chương trình Toán 12. Hãy cùng Tusach.vn khám phá thêm nhiều kiến thức thú vị khác! | |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập