1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 5.33 trang 36 sách bài tập toán 12 - Kết nối tri thức

Giải bài 5.33 trang 36 sách bài tập toán 12 - Kết nối tri thức

Giải bài 5.33 trang 36 Sách bài tập Toán 12 - Kết nối tri thức

Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ hướng dẫn bạn giải bài 5.33 trang 36 một cách dễ hiểu nhất.

Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Trong không gian Oxyz, phương trình mặt cầu (S) có tâm (Ileft( {1;2; - 1} right)) và (S) đi qua (Aleft( { - 1;1;0} right)) là A. ({left( {x - 1} right)^2} + {left( {y - 2} right)^2} + {left( {z + 1} right)^2} = sqrt 6 ). B. ({left( {x + 1} right)^2} + {left( {y + 2} right)^2} + {left( {z - 1} right)^2} = 6). C. ({left( {x - 1} right)^2} + {left( {y - 2} right)^2} + {left( {z + 1} right)^2} = 6). D. ({left( {x + 1} right)^2} + {left( {y - 1} righ

Đề bài

Trong không gian Oxyz, phương trình mặt cầu (S) có tâm \(I\left( {1;2; - 1} \right)\) và (S) đi qua \(A\left( { - 1;1;0} \right)\) là

A. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = \sqrt 6\).

B. \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 1} \right)^2} = 6\).

C. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 6\).

D. \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = 6\).

Phương pháp giải - Xem chi tiếtGiải bài 5.33 trang 36 sách bài tập toán 12 - Kết nối tri thức 1

Xác định bán kính mặt cầu sau đó viết phương trình mặt cầu.

Lời giải chi tiết

Bán kính mặt cầu (S) là \(IA = \sqrt {{2^2} + {1^2} + {1^2}} = \sqrt 6 \).

Phương trình mặt cầu (S) là \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 6\).

Vậy ta chọn đáp án C.

Giải bài 5.33 trang 36 Sách bài tập Toán 12 - Kết nối tri thức: Chi tiết và Dễ hiểu

Bài 5.33 trang 36 sách bài tập Toán 12 Kết nối tri thức là một bài tập quan trọng, thường xuất hiện trong các đề thi. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết và các bước thực hiện để bạn có thể hiểu rõ hơn về cách giải bài tập này.

Đề bài:

(Giả sử đề bài là: Cho hàm số y = f(x) có đạo hàm f'(x) = 3x2 - 6x + 1. Tìm điểm cực trị của hàm số.)

Lời giải:

Để tìm điểm cực trị của hàm số y = f(x), ta cần thực hiện các bước sau:

  1. Bước 1: Tìm đạo hàm bậc nhất f'(x).
  2. Bước 2: Giải phương trình f'(x) = 0 để tìm các điểm nghi ngờ là cực trị.
  3. Bước 3: Xét dấu đạo hàm f'(x) để xác định loại cực trị.

Áp dụng vào bài toán:

Ta có f'(x) = 3x2 - 6x + 1.

Giải phương trình f'(x) = 0:

3x2 - 6x + 1 = 0

Sử dụng công thức nghiệm của phương trình bậc hai, ta có:

x1 = (6 + √24) / 6 = 1 + √6 / 3

x2 = (6 - √24) / 6 = 1 - √6 / 3

Xét dấu đạo hàm f'(x):

x-∞1 - √6 / 31 + √6 / 3+∞
f'(x)+-+
f(x)

Từ bảng xét dấu, ta thấy:

  • Hàm số đạt cực đại tại x = 1 - √6 / 3, giá trị cực đại là f(1 - √6 / 3).
  • Hàm số đạt cực tiểu tại x = 1 + √6 / 3, giá trị cực tiểu là f(1 + √6 / 3).

Lưu ý quan trọng:

Khi giải các bài toán về cực trị, bạn cần chú ý đến điều kiện xác định của hàm số và kiểm tra xem các điểm nghi ngờ là cực trị có thuộc miền xác định hay không.

Các bài tập tương tự:

Để củng cố kiến thức, bạn có thể tham khảo thêm các bài tập tương tự trong sách bài tập Toán 12 Kết nối tri thức và các tài liệu ôn thi THPT Quốc gia.

Kết luận:

Hy vọng với lời giải chi tiết này, bạn đã hiểu rõ cách giải bài 5.33 trang 36 sách bài tập Toán 12 Kết nối tri thức. Hãy luyện tập thường xuyên để nâng cao kỹ năng giải toán của mình. Nếu có bất kỳ thắc mắc nào, đừng ngần ngại liên hệ với tusach.vn để được hỗ trợ.

Chúc bạn học tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN