Chào mừng bạn đến với lời giải chi tiết bài 1.46 trang 32 sách bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng cung cấp những lời giải chính xác và đầy đủ nhất, đồng thời giải thích rõ ràng từng bước để bạn có thể hiểu sâu sắc về bài toán.
Ở ({0^ circ }C), sự mất nhiệt (H) (tính bằng Kcal/m2h, ở đây Kcal là kilocalories và 1 Kcal=1000 calo) từ cơ thể của một người có thể được mô hình hóa bằng công thức (H = 33left( {10sqrt v - v + 10,45} right),) Trong đó (v) là tốc độ gió (tính bằng m/s) (Theo sách Brief Calculus: An Applied Approach, 8th edition, Cengage Learning, 2009). a) Xét tính đơn điệu của hàm số (H) và giải thích ý nghĩa thực tiễn của kết quả nhận được. b) Tìm tốc độ thay đổi của (H) khi (v = 2) m/
Đề bài
Ở \({0^ \circ }C\), sự mất nhiệt \(H\) (tính bằng Kcal/m2h, ở đây Kcal là kilocalories và 1 Kcal=1000 calo) từ cơ thể của một người có thể được mô hình hóa bằng công thức
\(H = 33\left( {10\sqrt v - v + 10,45} \right),\)
Trong đó \(v\) là tốc độ gió (tính bằng m/s) (Theo sách Brief Calculus: An Applied Approach, 8th edition, Cengage Learning, 2009).
a) Xét tính đơn điệu của hàm số \(H\) và giải thích ý nghĩa thực tiễn của kết quả nhận được.
b) Tìm tốc độ thay đổi của \(H\) khi \(v = 2\) m/s. Giải thích ý nghĩa thực tiễn của kết quả này.
Phương pháp giải - Xem chi tiết
Ý a: Xét sự biến thiên của hàm số \(H\left( v \right) = 33\left( {10\sqrt v - v + 10,45} \right)\), sau đó nhận xét về mối liên hệ giữa mức nhiệt mất từ cơ thể và tốc độ gió.
Ý b: Tính \(H'\left( 2 \right)\), giá trị này là mức nhiệt của cơ thể mất tiếp khi vận tốc gió tăng từ \(2\) m/s lên \(3\) m/s.
Lời giải chi tiết
a) Xét hàm số \(H\left( v \right) = 33\left( {10\sqrt v - v + 10,45} \right)\).
Ta có \(H'\left( v \right) = 33\left( {\frac{5}{{\sqrt v }} - 1} \right),{\rm{ v > }}0\). Khi đó \(H'\left( v \right) = 0 \Leftrightarrow 33\left( {\frac{5}{{\sqrt v }} - 1} \right) = 0 \Leftrightarrow v = 25\).
Lập bảng biến thiên:

Từ bảng biến thiên suy ra \(H\) đồng biến trên khoảng \(\left( {25; + \infty } \right)\), nghịch biến trên khoảng \(\left( {0;25} \right)\)
Do đó, mức nhiệt mất từ cơ thể tăng khi tốc độ gió tăng không vượt quá 25 m/s, đạt tối đa ở mức gió 25 m/s và sau đó giảm dần khi tốc độ gió tiếp tục tăng.
b) Ta có \(H'\left( 2 \right) = 33\left( {\frac{5}{{\sqrt 2 }} - 1} \right) \approx 83,673\).
Điều này có nghĩa là mức nhiệt của cơ thể mất tiếp khi vận tốc gió tăng từ \(2\) m/s lên \(3\) m/s là khoảng \(83,673\) (Kcal/m2h).
Bài 1.46 trang 32 sách bài tập Toán 12 Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán liên quan đến tính đơn điệu, cực trị của hàm số, hoặc các bài toán ứng dụng thực tế.
Thông thường, bài 1.46 sẽ bao gồm một hoặc nhiều câu hỏi nhỏ, yêu cầu học sinh:
Để giải bài 1.46 trang 32 SBT Toán 12 Kết nối tri thức một cách hiệu quả, bạn cần:
Ví dụ minh họa (giả định):
Giả sử bài 1.46 yêu cầu tìm cực trị của hàm số y = x3 - 3x2 + 2.
Lời giải:
Tusach.vn là một trang web cung cấp đầy đủ các tài liệu học tập Toán 12, bao gồm:
Hãy truy cập tusach.vn để học tập Toán 12 một cách hiệu quả nhất!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập