1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 2 trang 48 sách bài tập toán 12 - Kết nối tri thức

Giải bài 2 trang 48 sách bài tập toán 12 - Kết nối tri thức

Giải bài 2 trang 48 sách bài tập Toán 12 - Kết nối tri thức

Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ hướng dẫn bạn giải bài 2 trang 48 một cách dễ hiểu nhất.

Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Cho hàm số (y = {x^3} + 3{x^2} + 1) có đồ thị (C). Xét đường thẳng đi qua điểm (Aleft( { - 3;1} right)) và có hệ số góc k. Điều kiện của k để đường thẳng đó cắt đồ thị (C) tại ba điểm phân biệt. A. (0 < k < 1). B. (k > 0). C. (1 < k < 9). D. (0 < k ne 9).

Đề bài

Cho hàm số \(y = {x^3} + 3{x^2} + 1\) có đồ thị (C). Xét đường thẳng đi qua điểm \(A\left( { - 3;1} \right)\) và có hệ số góc k. Điều kiện của k để đường thẳng đó cắt đồ thị (C) tại ba điểm phân biệt.

A. \(0 < k < 1\).

B. \(k > 0\).

C. \(1 < k < 9\).

D. \(0 < k \ne 9\).

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 48 sách bài tập toán 12 - Kết nối tri thức 1

Viết phương trình đường thẳng theo hệ số góc. Xét phương trình hoành độ giao điểm.

Tìm k để phương trình có 3 nghiệm phân biệt.

Lời giải chi tiết

Đường thẳng đi qua điểm \(A\left( { - 3;1} \right)\) và có hệ số góc k có phương trình \(d:y = k\left( {x + 3} \right) + 1\).

Xét phương trình hoành độ giao điểm của (C) và đường thẳng d:

\({x^3} + 3{x^2} + 1 = k\left( {x + 3} \right) + 1 \Leftrightarrow \left( {x + 3} \right)\left( {{x^2} - k} \right) = 0 \Leftrightarrow x = - 3\) hoặc \({x^2} = k\).

Số giao điểm của (C) và d bằng số nghiệm của phương trình trên do đó để đường thẳng cắt đồ thị (C) tại ba điểm phân biệt thì phương trình trên có 3 nghiệm phân biệt, điều này xảy ra khi phương trình \({x^2} = k\) có hai nghiệm phân biệt khác -3 do đó \(0 < k \ne 0\).

Đáp án D.

Giải bài 2 trang 48 sách bài tập Toán 12 - Kết nối tri thức: Tổng quan

Bài 2 trang 48 sách bài tập Toán 12 Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và luyện tập thường xuyên là chìa khóa để giải quyết thành công bài tập này.

Nội dung bài 2 trang 48 sách bài tập Toán 12 - Kết nối tri thức

Bài 2 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của một hàm số cho trước, có thể là hàm số đơn giản hoặc hàm số phức tạp.
  • Tìm đạo hàm cấp hai: Yêu cầu tìm đạo hàm cấp hai của một hàm số.
  • Ứng dụng đạo hàm để giải phương trình: Sử dụng đạo hàm để tìm nghiệm của phương trình.
  • Khảo sát hàm số: Sử dụng đạo hàm để khảo sát tính đơn điệu, cực trị của hàm số.

Lời giải chi tiết bài 2 trang 48 sách bài tập Toán 12 - Kết nối tri thức

Để giúp bạn hiểu rõ hơn, chúng tôi sẽ trình bày lời giải chi tiết cho từng phần của bài 2 trang 48:

Ví dụ 1: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1

Lời giải:

f'(x) = 3x2 + 4x - 5

Ví dụ 2: Tìm đạo hàm cấp hai của hàm số g(x) = sin(x)

Lời giải:

g'(x) = cos(x)

g''(x) = -sin(x)

Mẹo giải bài tập đạo hàm hiệu quả

Để giải bài tập đạo hàm hiệu quả, bạn nên:

  1. Nắm vững các công thức đạo hàm cơ bản: Đạo hàm của các hàm số đơn giản như xn, sin(x), cos(x), ex, ln(x).
  2. Thành thạo các quy tắc tính đạo hàm: Quy tắc cộng, trừ, nhân, chia, quy tắc chuỗi.
  3. Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để làm quen với các dạng bài và rèn luyện kỹ năng.
  4. Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Tài liệu tham khảo hữu ích

Ngoài sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 12
  • Các trang web học Toán trực tuyến
  • Các video hướng dẫn giải bài tập Toán 12

Kết luận

Hy vọng với lời giải chi tiết và những lời khuyên hữu ích trên, bạn đã có thể tự tin giải bài 2 trang 48 sách bài tập Toán 12 Kết nối tri thức. Chúc bạn học tập tốt và đạt kết quả cao!

Nếu bạn có bất kỳ câu hỏi nào, đừng ngần ngại liên hệ với chúng tôi tại tusach.vn. Chúng tôi luôn sẵn sàng hỗ trợ bạn.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN