Chào mừng bạn đến với lời giải chi tiết bài 1.14 trang 14 sách bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ cung cấp đáp án chính xác, dễ hiểu cùng với phương pháp giải chi tiết, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Tusach.vn luôn đồng hành cùng bạn trên con đường chinh phục môn Toán.
Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của các hàm số sau: a) (fleft( x right) = xsqrt {4 - {x^2}} , - 2 le x le 2); b) (fleft( x right) = x - cos x, - frac{pi }{2} le x le frac{pi }{2}).
Đề bài
Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của các hàm số sau:
a) \(f\left( x \right) = x\sqrt {4 - {x^2}} , - 2 \le x \le 2\);
b) \(f\left( x \right) = x - \cos x, - \frac{\pi }{2} \le x \le \frac{\pi }{2}\).
Phương pháp giải - Xem chi tiết
Đây là bài toán tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên một đoạn:
- Tìm các điểm thuộc đoạn đang xét mà tại đó giá trị đạo hàm bằng không hoặc không tồn tại.
- Tính giá trị của hàm số tại các điểm vừa tìm được ở bước trước và tại biên của đoạn đang xét.
- Tìm số lớn nhất, nhỏ nhất trong các số vừa tính được ở bước trước ta thu được giá trị lớn nhất, nhỏ nhất của hàm số trên đoạn.
Lời giải chi tiết
a) Ta có \(f'\left( x \right) = \sqrt {4 - {x^2}} - \frac{{{x^2}}}{{\sqrt {4 - {x^2}} }} = \frac{{4 - 2{x^2}}}{{\sqrt {4 - {x^2}} }}\).
Khi đó \(f'\left( x \right) = 0 \Leftrightarrow \frac{{4 - 2{x^2}}}{{\sqrt {4 - {x^2}} }} = 0 \Leftrightarrow 4 - 2{x^2} = 0 \Leftrightarrow x = - \sqrt 2 \) hoặc \(x = \sqrt 2 \) .
Ta cần tìm giá trị lớn nhất, nhỏ nhất của hàm số trên đoạn \(\left[ { - 2;2} \right]\).
Ta có: \(f\left( { - 2} \right) = \left( { - 2} \right) \cdot \sqrt {4 - {{\left( { - 2} \right)}^2}} = 0;{\rm{ }}f\left( 2 \right) = 2 \cdot \sqrt {4 - {2^2}} = 0\);
\(f\left( { - \sqrt 2 } \right) = \left( { - \sqrt 2 } \right) \cdot \sqrt {4 - {{\left( { - \sqrt 2 } \right)}^2}} = - 2;{\rm{ }}f\left( {\sqrt 2 } \right) = \sqrt 2 \cdot \sqrt {4 - {{\left( {\sqrt 2 } \right)}^2}} = 2\).
Do đó, \(\mathop {\min }\limits_{\left[ { - 2;2} \right]} f\left( x \right) = f\left( { - \sqrt 2 } \right) = - 2\); \(\mathop {\max }\limits_{\left[ { - 2;2} \right]} f\left( x \right) = f\left( {\sqrt 2 } \right) = 2\).
b) Ta có \(f'\left( x \right) = 1 + \sin x\). Ta thấy \(0 < \sin x < 1{\rm{ }}\forall {\rm{x}} \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) suy ra \(\sin x + 1 \ne 0\)\(\forall {\rm{x}} \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).
Do đó, trong khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\), phương trình \(f'\left( x \right) = 0\) vô nghiệm.
Ta có: \(f\left( { - \frac{\pi }{2}} \right) = - \frac{\pi }{2} - \cos \left( { - \frac{\pi }{2}} \right) = - \frac{\pi }{2};{\rm{ }}f\left( {\frac{\pi }{2}} \right) = \frac{\pi }{2} - \cos \frac{\pi }{2} = \frac{\pi }{2}\).
Vậy \(\mathop {\min }\limits_{\left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]} f\left( x \right) = f\left( { - \frac{\pi }{2}} \right) = - \frac{\pi }{2}\); \(\mathop {\max }\limits_{\left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]} f\left( x \right) = f\left( {\frac{\pi }{2}} \right) = \frac{\pi }{2}\).
Bài 1.14 trang 14 sách bài tập Toán 12 Kết nối tri thức thuộc chương 1: Giới hạn. Dạng bài tập này thường yêu cầu học sinh vận dụng kiến thức về giới hạn của hàm số để giải quyết các bài toán cụ thể. Việc hiểu rõ định nghĩa, các tính chất của giới hạn và các phương pháp tính giới hạn là vô cùng quan trọng để hoàn thành tốt bài tập này.
Bài 1.14 thường bao gồm các câu hỏi liên quan đến:
Để giúp các bạn học sinh hiểu rõ hơn về cách giải bài 1.14, chúng ta sẽ cùng nhau phân tích từng phần của bài tập. Dưới đây là lời giải chi tiết:
(a) Ví dụ minh họa (Giả sử bài tập là tính giới hạn lim (x->2) (x^2 - 4) / (x - 2)
(b) Các dạng bài tập tương tự và phương pháp giải
Các bài tập tương tự có thể yêu cầu tính giới hạn của các hàm số phức tạp hơn, hoặc sử dụng các định lý về giới hạn. Để giải quyết các bài tập này, bạn cần:
Để giải nhanh các bài tập về giới hạn, bạn có thể sử dụng một số mẹo sau:
Để củng cố kiến thức và kỹ năng giải bài tập về giới hạn, bạn nên luyện tập thêm với các bài tập khác trong sách bài tập và các đề thi thử. Tusach.vn cung cấp đầy đủ các bài giải chi tiết và các bài tập luyện tập để giúp bạn đạt kết quả tốt nhất.
Bài 1.14 trang 14 SBT Toán 12 Kết nối tri thức là một bài tập quan trọng giúp bạn rèn luyện kỹ năng tính giới hạn. Hy vọng với lời giải chi tiết và các phương pháp giải được trình bày trong bài viết này, bạn sẽ tự tin hơn khi giải các bài tập tương tự. Chúc bạn học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập