Bài 6.3 trang 42 SBT Toán 12 Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.
Một hộp chứa 20 tấm thẻ đánh số (left{ {1;2;...;20} right}). Nam rút ngẫu nhiên một tấm thẻ đưa cho Hà rồi Hà rút ngẫu nhiên tiếp một tấm thẻ. Tính xác suất để cả hai thẻ Hà nhận được đều ghi số nguyên tố.
Đề bài
Một hộp chứa 20 tấm thẻ đánh số \(\left\{ {1;2;...;20} \right\}\). Nam rút ngẫu nhiên một tấm thẻ đưa cho Hà rồi Hà rút ngẫu nhiên tiếp một tấm thẻ. Tính xác suất để cả hai thẻ Hà nhận được đều ghi số nguyên tố.
Phương pháp giải - Xem chi tiết
Gọi tên các biến cố, áp dụng công thức xác suất có điều kiện để tính.
Lời giải chi tiết
Gọi E là biến cố: “Hai thẻ Hà nhận được đều ghi số nguyên tố”.
Gọi A là biến cố: “Nam rút được tấm thẻ ghi số nguyên tố”.
B là biến cố: “Hà rút được tấm thẻ ghi số nguyên tố”.
Khi đó \(E = AB\).
Trong hộp có 8 tấm thẻ ghi số nguyên tố \(\left\{ {2;3;5;7;11;13;17;19} \right\}\) suy ra \(n\left( A \right) = 8\).
Ta có \(P\left( A \right) = \frac{8}{{20}} = \frac{2}{5}\).
Nếu A xảy ra thì trong hộp còn 19 thẻ với 7 thẻ số nguyên tố, do đó \(P\left( {B|A} \right) = \frac{7}{{19}}\).
Suy ra \(P\left( E \right) = P\left( {AB} \right) = P\left( A \right) \cdot P\left( {B|A} \right) = \frac{2}{5} \cdot \frac{7}{{19}} = \frac{{14}}{{95}}\).
Bài 6.3 trang 42 Sách bài tập Toán 12 Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Bài tập này thường yêu cầu học sinh áp dụng các quy tắc đạo hàm đã học để tìm đạo hàm của hàm số, sau đó sử dụng đạo hàm để giải quyết các bài toán liên quan đến cực trị, khoảng đơn điệu, hoặc các bài toán thực tế.
Thông thường, bài tập 6.3 sẽ có dạng như sau:
Để giải bài tập này, bạn cần thực hiện các bước sau:
Giả sử hàm số cần tìm đạo hàm là: f(x) = x3 - 3x2 + 2
Bước 1: f'(x) = 3x2 - 6x
Bước 2: Giải phương trình f'(x) = 0: 3x2 - 6x = 0 => x = 0 hoặc x = 2
Bước 3: Xét dấu f'(x):
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| f'(x) | + | - | + | |
| f(x) | Đồng biến | Nghịch biến | Đồng biến |
Vậy hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2).
Tusach.vn là website cung cấp đầy đủ các tài liệu học tập Toán 12, bao gồm:
Hãy truy cập tusach.vn để có thêm nhiều tài liệu học tập hữu ích và đạt kết quả cao trong kỳ thi THPT Quốc gia!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập