Chào mừng bạn đến với lời giải chi tiết bài 4.25 trang 17 sách bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng và dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
tusach.vn luôn đồng hành cùng bạn trên con đường chinh phục môn Toán.
Xét hình phẳng giới hạn bởi các đường (y = sqrt x ,y = frac{{{x^2}}}{8},x = 0,x = 4). a) Tính diện tích hình phẳng; b) Tính thể tích khối tròn xoay sinh ra khi quay hình phẳng xung quanh trục Ox.
Đề bài
Xét hình phẳng giới hạn bởi các đường \(y = \sqrt x ,y = \frac{{{x^2}}}{8},x = 0,x = 4\).
a) Tính diện tích hình phẳng;
b) Tính thể tích khối tròn xoay sinh ra khi quay hình phẳng xung quanh trục Ox.
Phương pháp giải - Xem chi tiết
Ý a: Xác định xem hàm số nào có đồ thị nằm phía trên với \(x \in \left[ {0;4} \right]\). Sử dụng trực tiếp công thức tính diện tích.
Ý b: Tính lần lượt thể tích khi quay hình phẳng giới hạn bởi các đường \(y = \sqrt x ,y = 0,x = 0,x = 4\)quanh trục Ox và thể tích khối tròn xoay khi quay hình phẳng giới hạn bởi các đường \(y = \frac{{{x^2}}}{8},y = 0,x = 0,x = 4\) quanh trục Ox. Lấy hiệu hai thể tích vừa tính ta tìm được thể thể tích theo yêu cầu, tuy nhiên ta cần xác định xem lấy thể tích nào trừ thể tích còn lại phụ thuộc vào các đồ thị.
Lời giải chi tiết
a) Ta có hình biểu diễn diện tích hình phẳng cần tìm như sau:

Ta thấy đồ thị \(y = \sqrt x \) nằm phía trên \(y = \frac{{{x^2}}}{8}\).
Diện tích cần tìm là \(S = \int\limits_0^4 {\left( {\sqrt x - \frac{{{x^2}}}{8}} \right)dx} = \left. {\left( {\frac{2}{3}x\sqrt x - \frac{{{x^3}}}{{24}}} \right)} \right|_0^4 = \frac{8}{3}\).
b) Thể tích khi xoay các đường \(y = \sqrt x ,y = 0,x = 0,x = 4\) quanh trục Ox là
\({V_1} = \pi \int\limits_0^4 {{{\left( {\sqrt x } \right)}^2}dx} = \pi \left. {\frac{{{x^2}}}{2}} \right|_0^4 = 8\pi \).
Thể tích khi xoay các đường \(y = \frac{{{x^2}}}{8},y = 0,x = 0,x = 4\) quanh trục Ox là
\({V_2} = \pi \int\limits_0^4 {{{\left( {\frac{{{x^2}}}{8}} \right)}^2}dx} = \pi \left. {\frac{{{x^5}}}{{320}}} \right|_0^4 = \frac{{16}}{5}\pi \).
Thể tích cần tìm là \(V = {V_1} - {V_2} = 8\pi - \frac{{16}}{5}\pi = \frac{{24}}{5}\pi \).
Bài 4.25 trang 17 sách bài tập Toán 12 Kết nối tri thức thường thuộc chủ đề về đạo hàm, ứng dụng đạo hàm để khảo sát hàm số, hoặc các bài toán liên quan đến hình học giải tích. Để giải quyết bài toán này một cách hiệu quả, bạn cần nắm vững các kiến thức cơ bản sau:
(Ở đây sẽ là lời giải chi tiết của bài 4.25. Vì không có nội dung cụ thể của bài toán, tôi sẽ đưa ra một ví dụ minh họa về cách trình bày lời giải.)
Ví dụ: Giả sử bài 4.25 yêu cầu tìm cực trị của hàm số f(x) = x3 - 3x2 + 2.
Để củng cố kiến thức, bạn có thể tự giải các bài tập tương tự trong sách bài tập Toán 12 Kết nối tri thức. Hãy chú ý đến việc áp dụng đúng các công thức và quy tắc đạo hàm, cũng như phân tích kỹ đề bài để tìm ra phương pháp giải phù hợp.
Ngoài ra, bạn có thể tham khảo thêm các tài liệu học tập trực tuyến, video bài giảng, hoặc tìm kiếm sự giúp đỡ từ giáo viên và bạn bè.
Khi giải bài tập Toán 12, đặc biệt là các bài toán về đạo hàm và ứng dụng đạo hàm, bạn cần:
Chúc bạn học tốt và đạt kết quả cao trong môn Toán!
Hãy truy cập tusach.vn để xem thêm nhiều bài giải Toán 12 khác và các tài liệu học tập hữu ích.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập