Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ hướng dẫn bạn giải bài 4.12 trang 12 một cách dễ hiểu nhất.
Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Cho (intlimits_0^5 {fleft( x right)dx} = 6) và (intlimits_0^5 {gleft( x right)dx} = 2). Hãy tính: a) (intlimits_0^5 {left[ {2fleft( x right) + 3gleft( x right)} right]dx} ); b) (intlimits_0^5 {left[ {2fleft( x right) - 3gleft( x right)} right]dx} ).
Đề bài
Cho \(\int\limits_0^5 {f\left( x \right)dx} = 6\) và \(\int\limits_0^5 {g\left( x \right)dx} = 2\). Hãy tính:
a) \(\int\limits_0^5 {\left[ {2f\left( x \right) + 3g\left( x \right)} \right]dx} \);
b) \(\int\limits_0^5 {\left[ {2f\left( x \right) - 3g\left( x \right)} \right]dx} \).
Phương pháp giải - Xem chi tiết
Ý a: Áp dụng tính chất của tích phân để biến đổi sao cho xuất hiện các tích phân \(\int\limits_0^5 {f\left( x \right)dx} \) và \(\int\limits_0^5 {g\left( x \right)dx} = 2\) sau đó thay số và tính toán.
Ý b: Tương tự ý a.
Lời giải chi tiết
a) Ta có \(\int\limits_0^5 {\left[ {2f\left( x \right) + 3g\left( x \right)} \right]dx} = 2\int\limits_0^5 {f\left( x \right)dx} + 3\int\limits_0^5 {g\left( x \right)dx} = 2 \cdot 6 + 3 \cdot 2 = 18\).
b) Ta có \(\int\limits_0^5 {\left[ {2f\left( x \right) - 3g\left( x \right)} \right]dx} = 2\int\limits_0^5 {f\left( x \right)dx} - 3\int\limits_0^5 {g\left( x \right)dx} = 2 \cdot 6 - 3 \cdot 2 = 6\).
Bài 4.12 trang 12 sách bài tập Toán 12 Kết nối tri thức yêu cầu chúng ta giải quyết một bài toán liên quan đến đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về:
Thông thường, bài 4.12 sẽ yêu cầu:
Để cung cấp lời giải chi tiết, chúng ta cần biết chính xác nội dung của bài 4.12. Giả sử bài toán có dạng như sau:
Cho hàm số y = f(x) = x3 - 3x2 + 2. Hãy khảo sát hàm số và tìm cực trị.
Hàm số y = x3 - 3x2 + 2 là hàm đa thức nên tập xác định của hàm số là D = ℝ.
f'(x) = 3x2 - 6x
f'(x) = 0 ⇔ 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0
Vậy x = 0 hoặc x = 2
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| f'(x) | + | - | + | |
| f(x) | NB | ĐC | TC |
Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞).
Hàm số nghịch biến trên khoảng (0; 2).
Hàm số đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2.
Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2.
Tusach.vn hy vọng rằng với lời giải chi tiết này, bạn đã hiểu rõ cách giải bài 4.12 trang 12 sách bài tập Toán 12 Kết nối tri thức. Hãy truy cập tusach.vn để xem thêm các bài giải khác và nâng cao kiến thức của mình nhé!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập