Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ hướng dẫn bạn giải bài 1.63 trang 36 một cách dễ hiểu nhất.
Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Cho hàm số (y = frac{1}{3}{x^3} + left( {m - 1} right){x^2} + left( {2m - 3} right)x + frac{2}{3}). a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi (m = 2). b) Tìm (m) để hàm số có hai điểm cực trị ({x_1}) và ({x_2}) thỏa mãn (x_1^2 + x_2^2 = 5). c) Tìm (m) để hàm số đồng biến trên (mathbb{R}). d) Tìm (m) để hàm số đồng biến trên khoảng (left( {1; + infty } right)).
Đề bài
Cho hàm số \(y = \frac{1}{3}{x^3} + \left( {m - 1} \right){x^2} + \left( {2m - 3} \right)x + \frac{2}{3}\).
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi \(m = 2\).
b) Tìm \(m\) để hàm số có hai điểm cực trị \({x_1}\) và \({x_2}\) thỏa mãn \(x_1^2 + x_2^2 = 5\).
c) Tìm \(m\) để hàm số đồng biến trên \(\mathbb{R}\).
d) Tìm \(m\) để hàm số đồng biến trên khoảng \(\left( {1; + \infty } \right)\).
Phương pháp giải - Xem chi tiết
Ý a: Thay \(m = 2\) và hàm số sau đó khảo sát sự biến thiên và vẽ đồ thị hàm số,
Ý b: Xét phương trình hoành độ giao điểm của hai đồ thị, tìm điều kiện để phương trình đó có hai nghiệm phân biệt \({x_1};{x_2}\) thỏa mãn \(x_1^2 + x_2^2 = 5\), sử dụng định lý Viète mà một số biến đổi cơ bản để giải ra m.
Ý c: Hàm số đồng biến trên \(\mathbb{R}\) khi \(y' \ge 0\forall x \in \mathbb{R}\). Sử dụng kiến thức về dấu, nghiệm của tam thức bậc hai để làm.
Ý d: Kết hợp với bảng biến thiên để giải bài toán, lưu ý xét hết các trường hợp.
Lời giải chi tiết
a) Khi \(m = 2\) hàm số trở thành \(y = \frac{1}{3}{x^3} + {x^2} + x + \frac{2}{3}\).
Tập xác định: \(\mathbb{R}\).
+ Sự biến thiên:
Ta có \(y' = {x^2} + 2x + 1 = {\left( {x + 1} \right)^2} \ge 0\) với mọi \(x \in \mathbb{R}\).
Suy ra hàm số đồng biến trên \(\mathbb{R}\) và không có cực trị.
Lập bảng biến thiên:

+ Đồ thị: Đồ thị nhận \(\left( { - 1;\frac{1}{3}} \right)\) làm tâm đối xứng.

b) Ta có \(y' = {x^2} + 2\left( {m - 1} \right)x + 2m - 3\).
Khi đó \(y' = 0 \Leftrightarrow {x^2} + 2\left( {m - 1} \right)x + 2m - 3 = 0 \Leftrightarrow x = - 1\) hoặc \(x = 3 - 2m\).
Để hàm số có hai cực trị thì đạo hàm \(y'\) phải có hai nghiệm phân biệt \({x_1};{x_2}\), tức là \(3 - 2m \ne - 1 \Leftrightarrow m \ne 2\)
Để \(x_1^2 + x_2^2 = 5\) thì \({\left( {3 - 2m} \right)^2} + 1 = 5 \Leftrightarrow m \in \left\{ {\frac{1}{2};\frac{5}{2}} \right\}\).
c) Hàm số đồng biến trên \(\mathbb{R}\) khi \(y' \ge 0\forall x \in \mathbb{R}\).
Ta có \({x^2} + 2\left( {m - 1} \right)x + 2m - 3 \ge 0 \Leftrightarrow \left\{ \begin{array}{l}1 > 0\\\Delta ' \le 0\end{array} \right. \Leftrightarrow 3 - 2m = - 1 \Leftrightarrow m = 2\).
d) Ta có \(y' = 0 \Leftrightarrow x = - 1\) hoặc \(x = 3 - 2m\).
Trường hợp 1: \( - 1 \le 3 - 2m \Leftrightarrow m \le 2\). Khi đó ta có bảng biến thiên:

Để hàm số đồng biến trên khoảng \(\left( {1; + \infty } \right)\) thì \(3 - 2m \le 1 \Leftrightarrow m \ge 1\). Suy ra \(1 \le m < 2\)
Trường hợp 2: \(3 - 2m < - 1 \Leftrightarrow m > 2\). Khi đó ta có bảng biến thiên:

Ta thấy hàm số luôn đồng biến trên \(\left( {1; + \infty } \right)\) nên trường hợp này ta có \(m > 2\).
Vậy \(m \ge 1\).
Trước khi đi vào giải chi tiết, chúng ta cùng xem lại đề bài của bài 1.63 trang 36 sách bài tập Toán 12 Kết nối tri thức:
(Đề bài cụ thể sẽ được chèn vào đây. Ví dụ: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính góc giữa đường thẳng SC và mặt phẳng (ABCD).)
Để giải quyết bài toán hình học không gian như bài 1.63 này, chúng ta cần nắm vững các kiến thức sau:
Bước 1: Xác định các yếu tố cần thiết
Trong bài toán này, chúng ta cần xác định:
Bước 2: Tìm hình chiếu của SC lên mặt phẳng (ABCD)
Vì SA vuông góc với mặt phẳng (ABCD) nên AC là hình chiếu của SC lên mặt phẳng (ABCD). Do đó, góc giữa SC và mặt phẳng (ABCD) chính là góc SCA.
Bước 3: Tính góc SCA
Xét tam giác SAC vuông tại A, ta có:
tan SCA = SA/AC = a/a√2 = 1/√2
Suy ra SCA = arctan(1/√2) ≈ 35.26°
Kết luận: Góc giữa đường thẳng SC và mặt phẳng (ABCD) là khoảng 35.26°.
Để củng cố kiến thức, bạn có thể tham khảo thêm các bài tập tương tự trong sách bài tập Toán 12 Kết nối tri thức và các nguồn tài liệu khác.
Tusach.vn luôn cập nhật lời giải chi tiết và chính xác cho các bài tập trong sách giáo khoa và sách bài tập Toán 12 Kết nối tri thức. Hãy truy cập tusach.vn để được hỗ trợ tốt nhất trong quá trình học tập của bạn!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập