Bài 5.47 trang 39 SBT Toán 12 Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Trong không gian Oxyz, cho hai điểm (Aleft( {2; - 1; - 3} right)); (Bleft( {3;0; - 1} right)) và mặt phẳng (left( P right):x - 3y - z - 5 = 0). Viết phương trình mặt phẳng (Q) chứa hai điểm A, B đồng thời vuông góc với mặt phẳng (P).
Đề bài
Trong không gian Oxyz, cho hai điểm \(A\left( {2; - 1; - 3} \right)\); \(B\left( {3;0; - 1} \right)\) và mặt phẳng \(\left( P \right):x - 3y - z - 5 = 0\). Viết phương trình mặt phẳng (Q) chứa hai điểm A, B đồng thời vuông góc với mặt phẳng (P).
Phương pháp giải - Xem chi tiết
Tích có hướng của \(\overrightarrow {AB} \) và vectơ pháp tuyến của \(\left( P \right):x - 3y - z - 5 = 0\) là một vectơ pháp tuyến của (Q).
Lời giải chi tiết
Ta có \(\overrightarrow {AB} = \left( {1;1;2} \right)\). Vectơ pháp tuyến của \(\left( P \right):x - 3y - z - 5 = 0\) là \(\overrightarrow n = \left( {1; - 3; - 1} \right)\).
Do (Q) chứa hai điểm A, B đồng thời vuông góc với mặt phẳng (P) một vectơ pháp tuyến của (Q) là \(\left[ {\overrightarrow {AB} ,\overrightarrow n } \right] = \left( {5;3; - 4} \right)\).
Phương trình mặt phẳng (Q) là \(5\left( {x - 3} \right) + 3y - 4\left( {z + 1} \right) = 0 \Leftrightarrow 5x + 3y - 4z - 19 = 0\).
Bài 5.47 trang 39 sách bài tập Toán 12 Kết nối tri thức yêu cầu học sinh giải quyết một bài toán liên quan đến việc tìm đạo hàm và ứng dụng đạo hàm để khảo sát hàm số. Để giải bài này một cách hiệu quả, chúng ta cần nắm vững các kiến thức sau:
Thông thường, bài 5.47 sẽ đưa ra một hàm số cụ thể và yêu cầu:
Để giải bài 5.47, chúng ta thực hiện theo các bước sau:
Sử dụng các quy tắc tính đạo hàm đã học để tính đạo hàm của hàm số đã cho. Ví dụ, nếu hàm số là f(x) = x3 - 3x2 + 2, thì f'(x) = 3x2 - 6x.
Giải phương trình f'(x) = 0 để tìm các giá trị x mà tại đó đạo hàm bằng 0. Các giá trị này là các điểm cực trị của hàm số. Sau đó, xét dấu của đạo hàm để xác định loại cực trị (cực đại hoặc cực tiểu).
Xét dấu của đạo hàm f'(x) trên các khoảng xác định của hàm số. Nếu f'(x) > 0 trên một khoảng, hàm số đồng biến trên khoảng đó. Nếu f'(x) < 0 trên một khoảng, hàm số nghịch biến trên khoảng đó.
Sử dụng các thông tin đã tìm được (cực trị, khoảng đồng biến, nghịch biến) để vẽ đồ thị hàm số.
Giả sử hàm số f(x) = x3 - 3x2 + 2. Ta thực hiện các bước sau:
Giải bài 5.47 trang 39 SBT Toán 12 Kết nối tri thức đòi hỏi sự hiểu biết vững chắc về đạo hàm và ứng dụng của đạo hàm. Bằng cách thực hiện theo các bước hướng dẫn chi tiết và luyện tập thường xuyên, bạn sẽ có thể giải quyết bài tập này một cách dễ dàng và hiệu quả. tusach.vn luôn đồng hành cùng bạn trên con đường chinh phục môn Toán!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập