Chào mừng bạn đến với lời giải chi tiết bài 2.30 trang 54 sách bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ cung cấp cho bạn đáp án chính xác và phương pháp giải bài tập một cách dễ hiểu nhất.
Chúng tôi luôn cố gắng mang đến những nội dung chất lượng, giúp bạn học Toán 12 hiệu quả hơn.
Cho hình lập phương (ABCD.A'B'C'D') có độ dài mỗi cạnh bằng 1. Xét hệ tọa độ (Oxyz) gắn với hình lập phương như hình vẽ bên. a) Tìm tọa độ các đỉnh của hình lập phương. b) Tìm tọa độ trọng tâm (G) của tam giác (B'CD'). c) Chứng minh rằng ba điểm (O,G,A) thẳng hàng.
Đề bài
Cho hình lập phương \(ABCD.A'B'C'D'\) có độ dài mỗi cạnh bằng 1. Xét hệ tọa độ \(Oxyz\) gắn với hình lập phương như hình vẽ bên.
a) Tìm tọa độ các đỉnh của hình lập phương.
b) Tìm tọa độ trọng tâm \(G\) của tam giác \(B'CD'\).
c) Chứng minh rằng ba điểm \(O,G,A\) thẳng hàng.

Phương pháp giải - Xem chi tiết
Ý a: Tìm tọa độ các đỉnh thuộc tia \(Ox,Oy,Oz\) trước, sau đó sử dụng các đẳng thức vectơ bằng nhau để tìm các điểm còn lại. Chú ý sử dụng giả thiết cạnh hình lập phương bằng 1.
Ý b: Dùng công thức tìm tọa độ trọng tâm.
Ý c: Chứng minh \(\overrightarrow {OA} \) và \(\overrightarrow {OG} \) cùng phương bằng đẳng thức \(\overrightarrow {OA} = k\overrightarrow {OG} \).
Lời giải chi tiết
a) Ta có gốc tọa độ là \(C'\) nên \(C'\left( {0;0;0} \right)\); \(B'\) thuộc tia \(Ox\) và \(OB' = 1\) nên \(B'\left( {1;0;0} \right)\); \(D'\) thuộc tia \(Oy\) và \(OD' = 1\) nên \(D'\left( {0;1;0} \right)\); \(C\) thuộc tia \(Oz\) và \(OC = 1\) nên \(C\left( {0;0;1} \right)\).
Ta có \(\overrightarrow {C'C} = \overrightarrow {D'D} \Leftrightarrow \left\{ \begin{array}{l}0 = {x_D}\\0 = {y_D} - 1\\1 = {z_D}\end{array} \right. \Leftrightarrow D\left( {0;1;1} \right)\); \(\overrightarrow {B'B} = \overrightarrow {C'C} \Leftrightarrow \left\{ \begin{array}{l}{x_B} - 1 = 0\\{y_B} = 0\\{z_B} = 1\end{array} \right. \Leftrightarrow B\left( {1;0;1} \right)\);
\(\overrightarrow {B'A'} = \overrightarrow {C'D'} \Leftrightarrow \left\{ \begin{array}{l}{x_{A'}} - 1 = 0\\{y_{A'}} = 1\\{z_{A'}} = 0\end{array} \right. \Leftrightarrow A'\left( {1;1;0} \right)\); \(\overrightarrow {A'A} = \overrightarrow {C'C} \Leftrightarrow \left\{ \begin{array}{l}{x_A} - 1 = 0\\{y_A} - 1 = 0\\{z_A} = 1\end{array} \right. \Leftrightarrow A\left( {1;1;1} \right)\).
Vậy \(A\left( {1;1;1} \right)\), \(B\left( {1;0;1} \right)\), \(C\left( {0;0;1} \right)\), \(D\left( {0;1;1} \right)\), \(A'\left( {1;1;0} \right)\), \(B'\left( {1;0;0} \right)\), \(C'\left( {0;0;0} \right)\)
và \(D'\left( {0;1;0} \right)\).
b) Ta có \(B'\left( {1;0;0} \right)\), \(C\left( {0;0;1} \right)\) và \(D'\left( {0;1;0} \right)\) suy ra \(G\left( {\frac{1}{3};\frac{1}{3};\frac{1}{3}} \right)\).
c) Ta có \(\overrightarrow {OG} = \left( {\frac{1}{3};\frac{1}{3};\frac{1}{3}} \right)\); \(\overrightarrow {OA} = \left( {1;1;1} \right)\). Suy ra \(\overrightarrow {OA} = 3\overrightarrow {OG} \). Vậy ba điểm \(O,G,A\) thẳng hàng.
Bài 2.30 trang 54 sách bài tập Toán 12 Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán liên quan đến tiếp tuyến của đồ thị hàm số, cực trị của hàm số, hoặc các bài toán ứng dụng thực tế.
Để giải quyết bài 2.30 trang 54 SBT Toán 12 Kết nối tri thức, bạn cần nắm vững các kiến thức sau:
(Ở đây sẽ là lời giải chi tiết của bài 2.30. Vì không có nội dung cụ thể của bài tập, nên phần này sẽ được mô tả chung. Cần thay thế bằng lời giải chính xác khi có đề bài.)
Để giải bài tập này, ta thực hiện các bước sau:
(Ở đây sẽ là một ví dụ minh họa tương tự bài 2.30 để giúp học sinh hiểu rõ hơn về phương pháp giải. Cần thay thế bằng ví dụ phù hợp khi có đề bài.)
Để củng cố kiến thức, bạn có thể tham khảo thêm các bài tập tương tự trong sách bài tập Toán 12 Kết nối tri thức hoặc trên các trang web học Toán trực tuyến.
Tusach.vn là một trang web cung cấp đầy đủ các tài liệu học Toán 12, bao gồm sách giáo khoa, sách bài tập, đề thi, và lời giải chi tiết. Chúng tôi cam kết mang đến cho bạn những tài liệu chất lượng, giúp bạn học Toán 12 hiệu quả và đạt kết quả cao.
| Chương | Bài | Liên kết |
|---|---|---|
| 1 | 1.1 | Giải bài 1.1 trang 8 |
| 2 | 2.2 | Giải bài 2.2 trang 20 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập