Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ hướng dẫn bạn giải bài 4.3 trang 7 một cách dễ hiểu nhất.
Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
a) (int {left( {3x + 4} right)sqrt[3]{x}} dx); b) (int {frac{{{{left( {2x + 3} right)}^2}}}{{sqrt x }}} dx).
Đề bài
a) \(\int {\left( {3x + 4} \right)\sqrt[3]{x}} dx\);
b) \(\int {\frac{{{{\left( {2x + 3} \right)}^2}}}{{\sqrt x }}} dx\).
Phương pháp giải - Xem chi tiết
Ý a: Biến đổi biểu thức dưới dấu tích phân để xuất hiện các đa thức dạng lũy thừa của \(x\).
Sau đó sử dụng công thức nguyên hàm của hàm lũy thừa.
Ý b: Biến đổi biểu thức dưới dấu tích phân để xuất hiện các đa thức dạng lũy thừa của \(x\).
Sau đó sử dụng công thức nguyên hàm của hàm lũy thừa.
Lời giải chi tiết
a) Ta có \(\left( {3x + 4} \right)\sqrt[3]{x} = 3x\sqrt[3]{x} + 4\sqrt[3]{x} = 3{x^{\frac{4}{3}}} + 4{x^{\frac{1}{3}}}\).
Do đó \(\int {\left( {3x + 4} \right)\sqrt[3]{x}} dx = \int {\left( {3{x^{\frac{4}{3}}} + 4{x^{\frac{1}{3}}}} \right)dx = } 3\int {{x^{\frac{4}{3}}}dx + } 4\int {{x^{\frac{1}{3}}}dx} \)
\( = 3\frac{{{x^{\frac{7}{3}}}}}{{\left( {\frac{7}{3}} \right)}} + 4\frac{{{x^{\frac{4}{3}}}}}{{\left( {\frac{4}{3}} \right)}} + C = \frac{9}{7}{x^2}\sqrt[3]{x} + 3x\sqrt[3]{x} + C = \left( {\frac{9}{7}{x^2} + 3x} \right)\sqrt[3]{x} + C.\)
b) Ta có \(\frac{{{{\left( {2x + 3} \right)}^2}}}{{\sqrt x }} = \frac{{4{x^2} + 12x + 9}}{{\sqrt x }} = 4x\sqrt x + 12\sqrt x + \frac{9}{{\sqrt x }} = 4{x^{\frac{3}{2}}} + 12{x^{\frac{1}{2}}} + \frac{9}{{\sqrt x }}\).
Do đó \(\int {\frac{{{{\left( {2x + 3} \right)}^2}}}{{\sqrt x }}} dx = \int {\left( {4{x^{\frac{3}{2}}} + 12{x^{\frac{1}{2}}} + \frac{9}{{\sqrt x }}} \right)dx = } 4\int {{x^{\frac{3}{2}}}dx + } 12\int {{x^{\frac{1}{2}}}dx} + 9\int {\frac{1}{{\sqrt x }}dx} \)
\( = 4 \cdot \frac{{{x^{\frac{5}{2}}}}}{{\left( {\frac{5}{2}} \right)}} + 12 \cdot \frac{{{x^{\frac{3}{2}}}}}{{\left( {\frac{3}{2}} \right)}} + 9 \cdot 2\sqrt x + C = \frac{8}{5}{x^2}\sqrt x + 8x\sqrt x + 18\sqrt x + C = \left( {\frac{8}{5}{x^2} + 8x + 18} \right)\sqrt x + C.\)
Bài 4.3 trang 7 sách bài tập Toán 12 Kết nối tri thức là một bài tập quan trọng, thường xuất hiện trong các đề thi. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết và các bước thực hiện để bạn có thể hiểu rõ hơn về cách giải bài tập này.
Bài tập 4.3 thường liên quan đến việc tìm đạo hàm của hàm số, xét tính đơn điệu của hàm số, hoặc tìm cực trị của hàm số. Để giải bài tập này, bạn cần nắm vững các công thức và quy tắc về đạo hàm, cũng như các phương pháp xét tính đơn điệu và cực trị của hàm số.
Để giải bài 4.3 trang 7, chúng ta sẽ thực hiện các bước sau:
Ví dụ, giả sử bài tập 4.3 yêu cầu tìm cực trị của hàm số f(x) = x3 - 3x2 + 2. Chúng ta sẽ thực hiện như sau:
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| f'(x) | + | - | + | |
| f(x) | Đồng biến | Nghịch biến | Đồng biến |
Ngoài bài 4.3 trang 7, bạn có thể tham khảo các bài tập tương tự trong sách bài tập Toán 12 Kết nối tri thức để củng cố kiến thức và kỹ năng giải bài tập về đạo hàm.
Hy vọng với lời giải chi tiết và các hướng dẫn trên, bạn đã có thể giải bài 4.3 trang 7 sách bài tập Toán 12 Kết nối tri thức một cách dễ dàng và hiệu quả. Chúc bạn học tốt!
Nếu bạn có bất kỳ câu hỏi nào, đừng ngần ngại liên hệ với chúng tôi tại tusach.vn để được hỗ trợ.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập