1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 1.15 trang 15 sách bài tập toán 12 - Kết nối tri thức

Giải bài 1.15 trang 15 sách bài tập toán 12 - Kết nối tri thức

Giải bài 1.15 trang 15 SBT Toán 12 - Kết nối tri thức

Chào mừng bạn đến với lời giải chi tiết bài 1.15 trang 15 sách bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp bạn nắm vững kiến thức và tự tin làm bài tập.

Chúng tôi luôn cố gắng cung cấp những lời giải chính xác và đầy đủ nhất, đồng thời giải thích rõ ràng từng bước để bạn có thể hiểu sâu sắc về bài toán.

Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số sau: (fleft( x right) = left{ begin{array}{l}2x - 1,{rm{ }}0 le x le 2{x^2} - 5x + 9,{rm{ }}2 < x le 3.end{array} right.)

Đề bài

Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số sau:

\(f\left( x \right) = \left\{ \begin{array}{l}2x - 1,{\rm{ }}0 \le x \le 2\\{x^2} - 5x + 9,{\rm{ }}2 < x \le 3.\end{array} \right.\)

Phương pháp giải - Xem chi tiếtGiải bài 1.15 trang 15 sách bài tập toán 12 - Kết nối tri thức 1

Ta cần tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \(\left[ {0;3} \right]\) nhưng \(f\left( x \right)\) là hàm có hai công thức trên \(f\left( x \right)\) nên sẽ tách thành hai trường hợp là \(x \in \left[ {0;2} \right]\) và \(x \in \left( {2;\left. 3 \right]} \right.\). Với mỗi trường hợp ta lần lượt thực hiện các bước sau:

- Tìm các điểm thuộc đoạn/nửa khoảng đang xét mà tại đó giá trị đạo hàm bằng không hoặc không tồn tại.

- Tính giá trị của hàm số tại các điểm vừa tìm được ở bước trước và tại biên của đoạn đang xét (nếu có).

 Sau khi thực hiện các bước trên với cả hai trường hợp, tìm số lớn nhất, nhỏ nhất trong các số vừa tính ta thu được giá trị lớn nhất, nhỏ nhất của hàm số trên toàn đoạn \(\left[ {0;3} \right]\).

Lời giải chi tiết

+ Xét \(x \in \left[ {0;2} \right]\) ta có \(f\left( x \right) = 2x - 1\).

Ta có \(f'\left( x \right) = 2 \ne 0{\rm{ }}\forall x \in \left( {0;2} \right)\). Mặt khác \(f\left( 0 \right) = 2 \cdot 0 - 1 = - 1;{\rm{ f}}\left( 2 \right) = 2 \cdot 2 - 1 = 3.\)

+ Xét \(x \in \left( {2;\left. 3 \right]} \right.\) ta có \(f\left( x \right) = {x^2} - 5x + 9\). Khi đó \(f'\left( x \right) = 0 \Leftrightarrow 2x - 5 = 0 \Leftrightarrow x = \frac{5}{2} \in \left( {2;3} \right)\).

Ta có \(f\left( {\frac{5}{2}} \right) = {\left( {\frac{5}{2}} \right)^2} - 5 \cdot \frac{5}{2} + 9 = \frac{{11}}{4};{\rm{ f}}\left( 3 \right) = {3^2} - 5 \cdot 3 + 9 = 3.\)

Vậy \(\mathop {\min }\limits_{\left[ {0;3} \right]} f\left( x \right) = f\left( 0 \right) = - 1\); \(\mathop {\max }\limits_{\left[ {0;3} \right]} f\left( x \right) = f\left( 2 \right) = f\left( 3 \right) = 3\).

Giải bài 1.15 trang 15 SBT Toán 12 - Kết nối tri thức: Tổng quan và Phương pháp

Bài 1.15 trang 15 sách bài tập Toán 12 Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế, hoặc chứng minh các đẳng thức liên quan đến đạo hàm.

Nội dung bài tập 1.15

Thông thường, bài 1.15 sẽ bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số tại một điểm cho trước.
  • Tìm đạo hàm của hàm số.
  • Vận dụng đạo hàm để giải các bài toán liên quan đến tiếp tuyến của đồ thị hàm số.
  • Chứng minh các đẳng thức liên quan đến đạo hàm.

Phương pháp giải bài tập 1.15

Để giải quyết bài tập 1.15 một cách hiệu quả, bạn cần nắm vững các kiến thức sau:

  1. Các công thức đạo hàm cơ bản: Đạo hàm của hàm số lũy thừa, hàm số lượng giác, hàm số mũ, hàm số logarit.
  2. Các quy tắc đạo hàm: Quy tắc cộng, trừ, nhân, chia, quy tắc hàm hợp.
  3. Ứng dụng của đạo hàm: Tìm tiếp tuyến của đồ thị hàm số, xét tính đơn điệu của hàm số.

Lời giải chi tiết bài 1.15 trang 15 SBT Toán 12 - Kết nối tri thức

(Ở đây sẽ là lời giải chi tiết cho bài 1.15, bao gồm các bước giải, giải thích rõ ràng và kết luận. Ví dụ:)

Bài 1.15: Cho hàm số f(x) = x3 - 3x2 + 2. Tính f'(x) và f'(1).

Giải:

Ta có: f'(x) = 3x2 - 6x

Thay x = 1 vào f'(x), ta được: f'(1) = 3(1)2 - 6(1) = -3

Vậy, f'(x) = 3x2 - 6x và f'(1) = -3.

Lưu ý khi giải bài tập

  • Đọc kỹ đề bài để xác định đúng yêu cầu của bài toán.
  • Sử dụng đúng công thức và quy tắc đạo hàm.
  • Kiểm tra lại kết quả sau khi giải xong.

Các bài tập tương tự

Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, bạn có thể tham khảo các bài tập tương tự sau:

  • Bài 1.16 trang 15 SBT Toán 12 - Kết nối tri thức
  • Bài 1.17 trang 15 SBT Toán 12 - Kết nối tri thức

Kết luận

Hy vọng với lời giải chi tiết và phương pháp giải bài tập 1.15 trang 15 SBT Toán 12 - Kết nối tri thức này, bạn đã nắm vững kiến thức và tự tin hơn trong việc giải các bài tập về đạo hàm. Chúc bạn học tốt!

Công thứcMô tả
f'(x) = limh→0 (f(x+h) - f(x))/hĐịnh nghĩa đạo hàm
(u + v)' = u' + v'Quy tắc cộng

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN