1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải mục 3 trang 16,17,18 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải mục 3 trang 16,17,18 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải Mục 3 Trang 16,17,18 SGK Toán 12 Tập 2 - Chân Trời Sáng Tạo

Chào mừng các em học sinh đến với lời giải chi tiết Mục 3 trang 16, 17, 18 SGK Toán 12 tập 2 chương trình Chân trời sáng tạo. Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp đáp án chính xác và dễ hiểu nhất.

Mục tiêu của chúng tôi là giúp các em nắm vững kiến thức, tự tin giải quyết các bài tập Toán 12 và đạt kết quả cao trong các kỳ thi.

Tính chất của tích phân

TH3

    Trả lời câu hỏi Thực hành 3 trang 17 SGK Toán 12 Chân trời sáng tạo

    Tính

    a) \(\int\limits_{ - 1}^1 {4{x^7}dx} \)

    b) \(\int\limits_{ - 2}^{ - 1} {\frac{{ - 3}}{{10x}}dx} \)

    c) \(\int\limits_0^2 {\frac{{{5^{x - 1}}}}{2}dx} \)

    Phương pháp giải:

    Sử dụng tính chất \(\int\limits_a^b {kf\left( x \right)dx} = k\int\limits_a^b {f\left( x \right)dx} \) để tính các tích phân.

    Lời giải chi tiết:

    a) \(\int\limits_{ - 1}^1 {4{x^7}dx} = 4\int\limits_{ - 1}^1 {{x^7}dx} = 4\left. {\left( {\frac{{{x^8}}}{8}} \right)} \right|_{ - 1}^1 = 4\left[ {\frac{{{1^8}}}{8} - \frac{{{{\left( { - 1} \right)}^8}}}{8}} \right] = 0\).

    b) \(\int\limits_{ - 2}^{ - 1} {\frac{{ - 3}}{{10x}}dx} = \frac{{ - 3}}{{10}}\int\limits_{ - 2}^{ - 1} {\frac{1}{x}dx} = \frac{{ - 3}}{{10}}\left. {\left( {\ln \left| x \right|} \right)} \right|_{ - 2}^{ - 1} = \frac{{ - 3}}{{10}}\left( {\ln \left| { - 1} \right| - \ln \left| { - 2} \right|} \right) = \frac{{3\ln 2}}{{10}}\)

    c) \(\int\limits_0^2 {\frac{{{5^{x - 1}}}}{2}dx} = \int\limits_0^2 {\frac{{{5^x}}}{{2.5}}dx} = \frac{1}{{10}}\int\limits_0^2 {{5^x}dx} = \frac{1}{{10}}.\left. {\left( {\frac{{{5^x}}}{{\ln 5}}} \right)} \right|_0^2 = \frac{1}{{10}}\left( {\frac{{{5^2}}}{{\ln 5}} - \frac{{{5^0}}}{{\ln 5}}} \right) = \frac{{12}}{{5\ln 5}}\)

    KP3

      Trả lời câu hỏi Khám phá 3 trang 16 SGK Toán 12 Chân trời sáng tạo

      a) Tìm một nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right) = 6{x^5}\). Từ đó, tính \(I = \int\limits_0^2 {6{x^5}dx} \).

      b) Tính \(J = \int\limits_0^2 {{x^5}} dx\).

      c) Có nhận xét gì về giá trị của \(I\) và \(6J\)?

      Phương pháp giải:

      a) Sử dụng các công thức nguyên hàm để tính \(\int {f\left( x \right)dx} \). Chọn hàm \(F\left( x \right)\), sau đó áp dụng công thức tích phân \(\int\limits_a^b {f\left( x \right)dx} = \left. {F\left( x \right)} \right|_a^b = F\left( b \right) - F\left( a \right)\).

      b) Sử dụng công thức tích phân \(\int\limits_a^b {f\left( x \right)dx} = \left. {F\left( x \right)} \right|_a^b = F\left( b \right) - F\left( a \right)\).

      c) So sánh \(I\) và \(6J\) và rút ra kết luận.

      Lời giải chi tiết:

      a) Ta có \(\int {f\left( x \right)dx} = \int {6{x^5}dx} = 6.\frac{{{x^6}}}{6} + C = {x^6} + C\)

      Chọn \(F\left( x \right) = {x^6}\), khi đó \(I = \int\limits_0^2 {6{x^5}dx} = \left. {{x^6}} \right|_0^2 = {2^6} - {0^6} = 64\).

      b) \(J = \int\limits_0^2 {{x^5}} dx = \left. {\frac{{{x^6}}}{6}} \right|_0^6 = \frac{{{2^6}}}{6} - \frac{{{0^6}}}{6} = \frac{{32}}{3}\).

      c) Ta thấy rằng \(6J = 6.\frac{{32}}{3} = 64 = I\).

      KP4

        Trả lời câu hỏi Khám phá 4 trang 17 SGK Toán 12 Chân trời sáng tạo

        a) Tìm một nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right) = {x^2} + {e^x}\). Từ đó, tính \(\int\limits_0^1 {\left( {{x^2} + {e^x}} \right)dx} \).

        b) Tính \(\int\limits_0^1 {{x^2}dx} + \int\limits_0^1 {{e^x}dx} \)

        c) Có nhận xét gì về hai kết quả trên?

        Phương pháp giải:

        a) Tìm nguyên hàm \(F\left( x \right) = \int {f\left( x \right)dx} \), sau đó sử dụng công thức tính tích phân \(\int\limits_a^b {f\left( x \right)dx} = \left. {F\left( x \right)} \right|_a^b = F\left( b \right) - F\left( a \right)\).

        b) Sử dụng công thức tính tích phân \(\int\limits_a^b {f\left( x \right)dx} = \left. {F\left( x \right)} \right|_a^b = F\left( b \right) - F\left( a \right)\).

        c) So sánh kết quả hai câu trên và rút ra kết luận.

        Lời giải chi tiết:

        a) Ta có \(\int {f\left( x \right)dx} = \int {\left( {{x^2} + {e^x}} \right)dx} = \int {{x^2}dx} + \int {{e^x}dx} = \frac{{{x^3}}}{3} + {e^x} + C\)

        Chọn \(F\left( x \right) = \frac{{{x^3}}}{3} + {e^x}\).

        Suy ra \(\int\limits_0^1 {\left( {{x^2} + {e^x}} \right)dx} = \left. {\left( {\frac{{{x^3}}}{3} + {e^x}} \right)} \right|_0^1 = \left( {\frac{{{1^3}}}{3} + {e^1}} \right) - \left( {\frac{{{0^3}}}{3} + {e^0}} \right) = e - \frac{2}{3}\)

        b) Ta có \(\int\limits_0^1 {{x^2}dx} + \int\limits_0^1 {{e^x}dx} = \left. {\left( {\frac{{{x^3}}}{3}} \right)} \right|_0^1 + \left. {\left( {{e^x}} \right)} \right|_0^1 = \left( {\frac{{{1^3}}}{3} - \frac{{{0^3}}}{3}} \right) + \left( {{e^1} - {e^0}} \right) = e - \frac{2}{3}\)

        c) Dựa vào câu a và b, ta suy ra \(\int\limits_0^1 {\left( {{x^2} + {e^x}} \right)dx} = \int\limits_0^1 {{x^2}dx} + \int\limits_0^1 {{e^x}dx} \).

        TH4

          Trả lời câu hỏi Thực hành 4 trang 18 SGK Toán 12 Chân trời sáng tạo

          Tính các tích phân sau:

          a) \(\int\limits_1^2 {\frac{{x - 1}}{{{x^2}}}} dx\)

          b) \(\int\limits_0^\pi {\left( {1 + 2{{\sin }^2}\frac{x}{2}} \right)dx} \)

          c) \(\int\limits_{ - 2}^1 {{{\left( {x - 2} \right)}^2}dx} + \int\limits_{ - 2}^1 {\left( {4x - {x^2}} \right)dx} \)

          Phương pháp giải:

          Sử dụng tính chất tích phân của một tổng, một hiệu để đưa về tính các tích phân đơn giản.

          Lời giải chi tiết:

          a) \(\int\limits_1^2 {\frac{{x - 1}}{{{x^2}}}} dx = \int\limits_1^2 {\frac{1}{x}dx} - \int\limits_1^2 {\frac{1}{{{x^2}}}dx} = \int\limits_1^2 {\frac{1}{x}dx} - \int\limits_1^2 {{x^{ - 2}}dx} = \left. {\left( {\ln \left| x \right|} \right)} \right|_1^2 - \left. {\left( {\frac{{{x^{ - 1}}}}{{ - 1}}} \right)} \right|_1^2\)

          \( = \left( {\ln 2 - \ln 1} \right) - \left( {\frac{{{2^{ - 1}}}}{{ - 1}} - \frac{{{1^{ - 1}}}}{-1}} \right) = \ln 2 - \frac{1}{2}\)

          b) \(\int\limits_0^\pi {\left( {1 + 2{{\sin }^2}\frac{x}{2}} \right)dx} = \int\limits_0^\pi {\left( {1 + 1 - \cos x} \right)dx} = \int\limits_0^\pi {\left( {2 - \cos x} \right)dx} = 2\int\limits_0^\pi {dx} - \int\limits_0^\pi {\cos xdx} \)

          \( = 2\left. {\left( x \right)} \right|_0^\pi - \left. {\left( {\sin x} \right)} \right|_0^\pi = 2\left( {\pi - 0} \right) - \left( {\sin \pi - \sin 0} \right) = 2\pi \)

          c) \(\int\limits_{ - 2}^1 {{{\left( {x - 2} \right)}^2}dx} + \int\limits_{ - 2}^1 {\left( {4x - {x^2}} \right)dx} = \int\limits_{ - 2}^1 {\left[ {{{\left( {x - 2} \right)}^2} + 4x - {x^2}} \right]dx = \int\limits_{ - 2}^1 {\left( {{x^2} - 4x + 4 + 4x - {x^2}} \right)dx} } \)

          \( = \int\limits_{ - 2}^1 {4dx} = \left. {4x} \right|_{ - 2}^1 = 4.1 - 4\left( { - 2} \right) = 12\)

          VD2

            Trả lời câu hỏi Vận dụng 2 trang 18 SGK Toán 12 Chân trời sáng tạo

            Thực hành

            Tại một nhà máy sản xuất một loại phân bón, gọi \(P\left( x \right)\) là lợi nhuận (tính theo triệu đồng) thu được từ việc bán \(x\) tấn sản phẩm trong một tuần. Khi đó, đạo hàm \(P'\left( x \right)\) gọi là lợi nhuận cận biên, cho biết tốc độ tăng lợi nhuận theo lượng sản phẩm bán được. Giả sử lợi nhuận cận biên (tính theo triệu đồng trên tấn) của nhà máy được ước lượng bởi công thức \(P'\left( x \right) = 16 - 0,02x\) với \(0 \le x \le 100\). Tính lợi nhuận nhà máy thu được khi bán 90 tấn sản phẩm trong tuần. Biết rằng nhà máy lỗ 25 triệu đồng nếu không bán được lượng sản phẩm nào trong tuần.

            Phương pháp giải:

            Ta có \(P\left( x \right) = \int {P'\left( x \right)dx} \).

            Do nhà máy lỗ 25 triệu đồng nếu không bán được lượng sản phẩm nào trong tuần, nên ta có \(P\left( 0 \right) = - 25\). Lợi nhuận nhà máy thu được khi bán 90 tấn sản phẩm là P(90).

            Lời giải chi tiết:

            Lợi nhuận nhà máy thu được khi bán được x tấn sản phẩm là:

            \(P(x) = \int {P'(x)dx} = \int {\left( {16 - 0,02x} \right)dx} = 16x - 0,01{x^2} + C\) (triệu đồng).

            Vì khi không bán được sản phẩm nào thì nhà máy lỗ 25 triệu đồng nên:

            \(P(0) = - 25 \Leftrightarrow 16.0 - 0,{01.0^2} + C = - 25 \Leftrightarrow C = - 25\).

            Vậy \(P(x) = 16x - 0,01{x^2} - 25\) (triệu đồng).

            Lợi nhuận nhà máy thu được khi bán được 90 tấn sản phẩm là:

            \(P(90) = 16.90 - 0,{01.90^2} - 25 = 1334\) (triệu đồng).

            KP5

              Trả lời câu hỏi Khám phá 5 trang 18 SGK Toán 12 Chân trời sáng tạo

              Cho hàm số \(f\left( x \right) = 2x\). Tính và so sánh kết quả:

               \(\int\limits_0^2 {f\left( x \right)dx} \) và \(\int\limits_0^1 {f\left( x \right)dx} + \int\limits_1^2 {f\left( x \right)dx} \)

              Phương pháp giải:

              Sử dụng công thức tính tích phân để tính \(\int\limits_0^2 {f\left( x \right)dx} \) và \(\int\limits_0^1 {f\left( x \right)dx} + \int\limits_1^2 {f\left( x \right)dx} \) và so sánh kết quả.

              Lời giải chi tiết:

              Ta có

              \(\int\limits_0^2 {f\left( x \right)dx} = \int\limits_0^2 {2xdx} = 2\int\limits_0^2 {xdx} = 2\left. {\left( {\frac{{{x^2}}}{2}} \right)} \right|_0^2 = 2\left( {\frac{{{2^2}}}{2} - \frac{{{0^2}}}{2}} \right) = 4\)

              \(\int\limits_0^1 {f\left( x \right)dx} + \int\limits_1^2 {f\left( x \right)dx} = \int\limits_0^1 {2xdx} + \int\limits_1^2 {2xdx} = 2\left( {\int\limits_0^1 {xdx} + \int\limits_1^2 {xdx} } \right) = 2\left[ {\left. {\left( {\frac{{{x^2}}}{2}} \right)} \right|_0^1 + \left. {\left( {\frac{{{x^2}}}{2}} \right)} \right|_1^2} \right]\)\( = 2\left[ {\left( {\frac{{{1^2}}}{2} - \frac{{{0^2}}}{2}} \right) + \left( {\frac{{{2^2}}}{2} - \frac{{{1^2}}}{2}} \right)} \right] = 4\)

              Vậy \(\int\limits_0^2 {f\left( x \right)dx} = \int\limits_0^1 {f\left( x \right)dx} + \int\limits_1^2 {f\left( x \right)dx} \)

              TH5

                Trả lời câu hỏi Thực hành 5 trang 19 SGK Toán 12 Chân trời sáng tạo

                Tính

                a) \(\int\limits_{ - 1}^{\frac{1}{2}} {\left( {4{x^3} - 5} \right)dx} - \int\limits_1^{\frac{1}{2}} {\left( {4{x^3} - 5} \right)dx} \)

                b) \(\int\limits_0^3 {\left| {x - 1} \right|dx} \)

                c) \(\int\limits_0^\pi {\left| {\cos x} \right|dx} \)

                Phương pháp giải:

                a) Sử dụng các tính chất của tích phân: \(\int\limits_a^b {f\left( x \right)dx} = - \int\limits_b^a {f\left( x \right)dx} \) và \(\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^c {f\left( x \right)dx} + \int\limits_c^b {f\left( x \right)dx} \).

                b) Ta có \(\left| {x - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{x - 1{\rm{ }}\left( {x \ge 1} \right)}\\{1 - x{\rm{ }}\left( {x < 1} \right)}\end{array}} \right.\). Từ đó ta có \(\int\limits_0^3 {\left| {x - 1} \right|dx} = \int\limits_0^1 {\left| {x - 1} \right|dx} + \int\limits_1^3 {\left| {x - 1} \right|dx} \)

                c) Ta có \(\left| {\cos x} \right| = \left\{ {\begin{array}{*{20}{c}}{\cos x{\rm{ }}\left( {0 \le x \le \frac{\pi }{2}} \right)}\\{ - \cos x{\rm{ }}\left( {\frac{\pi }{2} \le x \le \frac{\pi }{2}} \right)}\end{array}} \right.\).

                Từ đó ta có \(\int\limits_0^\pi {\left| {\cos x} \right|dx} = \int\limits_0^{\frac{\pi }{2}} {\left| {\cos x} \right|dx} + \int\limits_{\frac{\pi }{2}}^\pi {\left| {\cos x} \right|dx} \).

                Lời giải chi tiết:

                a) \(\int\limits_{ - 1}^{\frac{1}{2}} {\left( {4{x^3} - 5} \right)dx} - \int\limits_1^{\frac{1}{2}} {\left( {4{x^3} - 5} \right)dx} = \int\limits_{ - 1}^{\frac{1}{2}} {\left( {4{x^3} - 5} \right)dx} + \int\limits_{\frac{1}{2}}^1 {\left( {4{x^3} - 5} \right)dx} = \int\limits_{ - 1}^1 {\left( {4{x^3} - 5} \right)dx} \)

                \( = 4\int\limits_{ - 1}^1 {{x^3}dx} - 5\int\limits_{ - 1}^1 {dx} = \left. {\left( {{x^4}} \right)} \right|_{ - 1}^1 - 5\left. {\left( x \right)} \right|_{ - 1}^1 = \left[ {{1^4} - {{\left( { - 1} \right)}^4}} \right] - 5\left[ {1 - \left( { - 1} \right)} \right] = - 10\)

                b) \(\int\limits_0^3 {\left| {x - 1} \right|dx} = \int\limits_0^1 {\left| {x - 1} \right|dx} + \int\limits_1^3 {\left| {x - 1} \right|dx} = \int\limits_0^1 {\left( {1 - x} \right)dx} + \int\limits_1^3 {\left( {x - 1} \right)dx} = \left. {\left( {x - \frac{{{x^2}}}{2}} \right)} \right|_0^1 + \left. {\left( {\frac{{{x^2}}}{2} - x} \right)} \right|_1^3\)

                \( = \left[ {\left( {1 - \frac{{{1^2}}}{2}} \right) - \left( {0 - \frac{{{0^2}}}{2}} \right)} \right] + \left[ {\left( {\frac{{{3^2}}}{2} - 3} \right) - \left( {\frac{{{1^2}}}{2} - 1} \right)} \right] = \frac{1}{2} + 2 = \frac{5}{2}\)

                c) \(\int\limits_0^\pi {\left| {\cos x} \right|dx} = \int\limits_0^{\frac{\pi }{2}} {\cos xdx} + \int\limits_{\frac{\pi }{2}}^\pi {\left( { - \cos x} \right)dx} = \int\limits_0^{\frac{\pi }{2}} {\cos xdx} - \int\limits_{\frac{\pi }{2}}^\pi {\cos xdx} = \left. {\left( {\sin x} \right)} \right|_0^{\frac{\pi }{2}} - \left. {\left( {\sin x} \right)} \right|_{\frac{\pi }{2}}^\pi \)

                \( = \left( {\sin \frac{\pi }{2} - \sin 0} \right) - \left( {\sin \pi - \sin \frac{\pi }{2}} \right) = 2\)

                VD3

                  Trả lời câu hỏi Vận dụng 3 trang 19 SGK Toán 12 Chân trời sáng tạo

                  Biết rằng tốc độ \(v\) (km/phút) của một ca nô cao tốc thay đổi theo thời gian \(t\) (phút) như sau: \(v\left( t \right) = \left\{ {\begin{array}{*{20}{c}}{0,5t{\rm{ }}\left( {0 \le t \le 2} \right)}\\{{\rm{ }}1{\rm{ }}\left( {2 \le t < 15} \right)}\\{4 - 0,2t{\rm{ }}\left( {15 \le t \le 20} \right)}\end{array}} \right.\). Tính quãng đường ca nô di chuyển được trong khoảng thời gian từ 0 đến 20 phút.

                  Phương pháp giải:

                  Gọi \(s\left( t \right)\) là quãng đường ca nô đi được đến thời điểm \(t\) (phút).

                  Quãng đường ca nô di chuyển được trong khoảng thời gian từ 0 đến 20 phút là \(s\left( {20} \right) - s\left( 0 \right) = \int\limits_0^{20} {v\left( t \right)dt} \).Sử dụng tính chất \(\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^c {f\left( x \right)dx} + \int\limits_c^b {f\left( x \right)dx} \) của tích phân để tính \(\int\limits_0^{20} {v\left( t \right)dt} \).

                  Lời giải chi tiết:

                  Gọi \(s\left( t \right)\) (km) là quãng đường ca nô đi được đến thời điểm \(t\) (phút).

                  Quãng đường ca nô di chuyển được trong khoảng thời gian từ 0 đến 20 phút là \(s\left( {20} \right) - s\left( 0 \right) = \int\limits_0^{20} {v\left( t \right)dt} = \int\limits_0^2 {v\left( t \right)dt} + \int\limits_2^{15} {v\left( t \right)dt} + \int\limits_{15}^{20} {v\left( t \right)dt} \)

                  \( = \int\limits_0^2 {0,5tdt} + \int\limits_2^{15} {dt} + \int\limits_{15}^{20} {\left( {4 - 0,2t} \right)dt} = 0,5\left. {\left( {\frac{{{t^2}}}{2}} \right)} \right|_0^2 + \left. {\left( t \right)} \right|_2^{15} + \left. {\left( {4t - 0,1{t^2}} \right)} \right|_{15}^{20}\)

                  \(0,5\left( {\frac{{{2^2}}}{2} - \frac{{{0^2}}}{2}} \right) + \left( {15 - 2} \right) + \left[ {\left( {4.20 - 0,{{1.20}^2}} \right) - \left( {4.15 - 0,{{1.15}^2}} \right)} \right] = 16,5\) (km)

                  Lựa chọn câu để xem lời giải nhanh hơn
                  • KP3
                  • TH3
                  • KP4
                  • TH4
                  • VD2
                  • KP5
                  • TH5
                  • VD3

                  Trả lời câu hỏi Khám phá 3 trang 16 SGK Toán 12 Chân trời sáng tạo

                  a) Tìm một nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right) = 6{x^5}\). Từ đó, tính \(I = \int\limits_0^2 {6{x^5}dx} \).

                  b) Tính \(J = \int\limits_0^2 {{x^5}} dx\).

                  c) Có nhận xét gì về giá trị của \(I\) và \(6J\)?

                  Phương pháp giải:

                  a) Sử dụng các công thức nguyên hàm để tính \(\int {f\left( x \right)dx} \). Chọn hàm \(F\left( x \right)\), sau đó áp dụng công thức tích phân \(\int\limits_a^b {f\left( x \right)dx} = \left. {F\left( x \right)} \right|_a^b = F\left( b \right) - F\left( a \right)\).

                  b) Sử dụng công thức tích phân \(\int\limits_a^b {f\left( x \right)dx} = \left. {F\left( x \right)} \right|_a^b = F\left( b \right) - F\left( a \right)\).

                  c) So sánh \(I\) và \(6J\) và rút ra kết luận.

                  Lời giải chi tiết:

                  a) Ta có \(\int {f\left( x \right)dx} = \int {6{x^5}dx} = 6.\frac{{{x^6}}}{6} + C = {x^6} + C\)

                  Chọn \(F\left( x \right) = {x^6}\), khi đó \(I = \int\limits_0^2 {6{x^5}dx} = \left. {{x^6}} \right|_0^2 = {2^6} - {0^6} = 64\).

                  b) \(J = \int\limits_0^2 {{x^5}} dx = \left. {\frac{{{x^6}}}{6}} \right|_0^6 = \frac{{{2^6}}}{6} - \frac{{{0^6}}}{6} = \frac{{32}}{3}\).

                  c) Ta thấy rằng \(6J = 6.\frac{{32}}{3} = 64 = I\).

                  Trả lời câu hỏi Thực hành 3 trang 17 SGK Toán 12 Chân trời sáng tạo

                  Tính

                  a) \(\int\limits_{ - 1}^1 {4{x^7}dx} \)

                  b) \(\int\limits_{ - 2}^{ - 1} {\frac{{ - 3}}{{10x}}dx} \)

                  c) \(\int\limits_0^2 {\frac{{{5^{x - 1}}}}{2}dx} \)

                  Phương pháp giải:

                  Sử dụng tính chất \(\int\limits_a^b {kf\left( x \right)dx} = k\int\limits_a^b {f\left( x \right)dx} \) để tính các tích phân.

                  Lời giải chi tiết:

                  a) \(\int\limits_{ - 1}^1 {4{x^7}dx} = 4\int\limits_{ - 1}^1 {{x^7}dx} = 4\left. {\left( {\frac{{{x^8}}}{8}} \right)} \right|_{ - 1}^1 = 4\left[ {\frac{{{1^8}}}{8} - \frac{{{{\left( { - 1} \right)}^8}}}{8}} \right] = 0\).

                  b) \(\int\limits_{ - 2}^{ - 1} {\frac{{ - 3}}{{10x}}dx} = \frac{{ - 3}}{{10}}\int\limits_{ - 2}^{ - 1} {\frac{1}{x}dx} = \frac{{ - 3}}{{10}}\left. {\left( {\ln \left| x \right|} \right)} \right|_{ - 2}^{ - 1} = \frac{{ - 3}}{{10}}\left( {\ln \left| { - 1} \right| - \ln \left| { - 2} \right|} \right) = \frac{{3\ln 2}}{{10}}\)

                  c) \(\int\limits_0^2 {\frac{{{5^{x - 1}}}}{2}dx} = \int\limits_0^2 {\frac{{{5^x}}}{{2.5}}dx} = \frac{1}{{10}}\int\limits_0^2 {{5^x}dx} = \frac{1}{{10}}.\left. {\left( {\frac{{{5^x}}}{{\ln 5}}} \right)} \right|_0^2 = \frac{1}{{10}}\left( {\frac{{{5^2}}}{{\ln 5}} - \frac{{{5^0}}}{{\ln 5}}} \right) = \frac{{12}}{{5\ln 5}}\)

                  Trả lời câu hỏi Khám phá 4 trang 17 SGK Toán 12 Chân trời sáng tạo

                  a) Tìm một nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right) = {x^2} + {e^x}\). Từ đó, tính \(\int\limits_0^1 {\left( {{x^2} + {e^x}} \right)dx} \).

                  b) Tính \(\int\limits_0^1 {{x^2}dx} + \int\limits_0^1 {{e^x}dx} \)

                  c) Có nhận xét gì về hai kết quả trên?

                  Phương pháp giải:

                  a) Tìm nguyên hàm \(F\left( x \right) = \int {f\left( x \right)dx} \), sau đó sử dụng công thức tính tích phân \(\int\limits_a^b {f\left( x \right)dx} = \left. {F\left( x \right)} \right|_a^b = F\left( b \right) - F\left( a \right)\).

                  b) Sử dụng công thức tính tích phân \(\int\limits_a^b {f\left( x \right)dx} = \left. {F\left( x \right)} \right|_a^b = F\left( b \right) - F\left( a \right)\).

                  c) So sánh kết quả hai câu trên và rút ra kết luận.

                  Lời giải chi tiết:

                  a) Ta có \(\int {f\left( x \right)dx} = \int {\left( {{x^2} + {e^x}} \right)dx} = \int {{x^2}dx} + \int {{e^x}dx} = \frac{{{x^3}}}{3} + {e^x} + C\)

                  Chọn \(F\left( x \right) = \frac{{{x^3}}}{3} + {e^x}\).

                  Suy ra \(\int\limits_0^1 {\left( {{x^2} + {e^x}} \right)dx} = \left. {\left( {\frac{{{x^3}}}{3} + {e^x}} \right)} \right|_0^1 = \left( {\frac{{{1^3}}}{3} + {e^1}} \right) - \left( {\frac{{{0^3}}}{3} + {e^0}} \right) = e - \frac{2}{3}\)

                  b) Ta có \(\int\limits_0^1 {{x^2}dx} + \int\limits_0^1 {{e^x}dx} = \left. {\left( {\frac{{{x^3}}}{3}} \right)} \right|_0^1 + \left. {\left( {{e^x}} \right)} \right|_0^1 = \left( {\frac{{{1^3}}}{3} - \frac{{{0^3}}}{3}} \right) + \left( {{e^1} - {e^0}} \right) = e - \frac{2}{3}\)

                  c) Dựa vào câu a và b, ta suy ra \(\int\limits_0^1 {\left( {{x^2} + {e^x}} \right)dx} = \int\limits_0^1 {{x^2}dx} + \int\limits_0^1 {{e^x}dx} \).

                  Trả lời câu hỏi Thực hành 4 trang 18 SGK Toán 12 Chân trời sáng tạo

                  Tính các tích phân sau:

                  a) \(\int\limits_1^2 {\frac{{x - 1}}{{{x^2}}}} dx\)

                  b) \(\int\limits_0^\pi {\left( {1 + 2{{\sin }^2}\frac{x}{2}} \right)dx} \)

                  c) \(\int\limits_{ - 2}^1 {{{\left( {x - 2} \right)}^2}dx} + \int\limits_{ - 2}^1 {\left( {4x - {x^2}} \right)dx} \)

                  Phương pháp giải:

                  Sử dụng tính chất tích phân của một tổng, một hiệu để đưa về tính các tích phân đơn giản.

                  Lời giải chi tiết:

                  a) \(\int\limits_1^2 {\frac{{x - 1}}{{{x^2}}}} dx = \int\limits_1^2 {\frac{1}{x}dx} - \int\limits_1^2 {\frac{1}{{{x^2}}}dx} = \int\limits_1^2 {\frac{1}{x}dx} - \int\limits_1^2 {{x^{ - 2}}dx} = \left. {\left( {\ln \left| x \right|} \right)} \right|_1^2 - \left. {\left( {\frac{{{x^{ - 1}}}}{{ - 1}}} \right)} \right|_1^2\)

                  \( = \left( {\ln 2 - \ln 1} \right) - \left( {\frac{{{2^{ - 1}}}}{{ - 1}} - \frac{{{1^{ - 1}}}}{-1}} \right) = \ln 2 - \frac{1}{2}\)

                  b) \(\int\limits_0^\pi {\left( {1 + 2{{\sin }^2}\frac{x}{2}} \right)dx} = \int\limits_0^\pi {\left( {1 + 1 - \cos x} \right)dx} = \int\limits_0^\pi {\left( {2 - \cos x} \right)dx} = 2\int\limits_0^\pi {dx} - \int\limits_0^\pi {\cos xdx} \)

                  \( = 2\left. {\left( x \right)} \right|_0^\pi - \left. {\left( {\sin x} \right)} \right|_0^\pi = 2\left( {\pi - 0} \right) - \left( {\sin \pi - \sin 0} \right) = 2\pi \)

                  c) \(\int\limits_{ - 2}^1 {{{\left( {x - 2} \right)}^2}dx} + \int\limits_{ - 2}^1 {\left( {4x - {x^2}} \right)dx} = \int\limits_{ - 2}^1 {\left[ {{{\left( {x - 2} \right)}^2} + 4x - {x^2}} \right]dx = \int\limits_{ - 2}^1 {\left( {{x^2} - 4x + 4 + 4x - {x^2}} \right)dx} } \)

                  \( = \int\limits_{ - 2}^1 {4dx} = \left. {4x} \right|_{ - 2}^1 = 4.1 - 4\left( { - 2} \right) = 12\)

                  Trả lời câu hỏi Vận dụng 2 trang 18 SGK Toán 12 Chân trời sáng tạo

                  Thực hành

                  Tại một nhà máy sản xuất một loại phân bón, gọi \(P\left( x \right)\) là lợi nhuận (tính theo triệu đồng) thu được từ việc bán \(x\) tấn sản phẩm trong một tuần. Khi đó, đạo hàm \(P'\left( x \right)\) gọi là lợi nhuận cận biên, cho biết tốc độ tăng lợi nhuận theo lượng sản phẩm bán được. Giả sử lợi nhuận cận biên (tính theo triệu đồng trên tấn) của nhà máy được ước lượng bởi công thức \(P'\left( x \right) = 16 - 0,02x\) với \(0 \le x \le 100\). Tính lợi nhuận nhà máy thu được khi bán 90 tấn sản phẩm trong tuần. Biết rằng nhà máy lỗ 25 triệu đồng nếu không bán được lượng sản phẩm nào trong tuần.

                  Phương pháp giải:

                  Ta có \(P\left( x \right) = \int {P'\left( x \right)dx} \).

                  Do nhà máy lỗ 25 triệu đồng nếu không bán được lượng sản phẩm nào trong tuần, nên ta có \(P\left( 0 \right) = - 25\). Lợi nhuận nhà máy thu được khi bán 90 tấn sản phẩm là P(90).

                  Lời giải chi tiết:

                  Lợi nhuận nhà máy thu được khi bán được x tấn sản phẩm là:

                  \(P(x) = \int {P'(x)dx} = \int {\left( {16 - 0,02x} \right)dx} = 16x - 0,01{x^2} + C\) (triệu đồng).

                  Vì khi không bán được sản phẩm nào thì nhà máy lỗ 25 triệu đồng nên:

                  \(P(0) = - 25 \Leftrightarrow 16.0 - 0,{01.0^2} + C = - 25 \Leftrightarrow C = - 25\).

                  Vậy \(P(x) = 16x - 0,01{x^2} - 25\) (triệu đồng).

                  Lợi nhuận nhà máy thu được khi bán được 90 tấn sản phẩm là:

                  \(P(90) = 16.90 - 0,{01.90^2} - 25 = 1334\) (triệu đồng).

                  Trả lời câu hỏi Khám phá 5 trang 18 SGK Toán 12 Chân trời sáng tạo

                  Cho hàm số \(f\left( x \right) = 2x\). Tính và so sánh kết quả:

                   \(\int\limits_0^2 {f\left( x \right)dx} \) và \(\int\limits_0^1 {f\left( x \right)dx} + \int\limits_1^2 {f\left( x \right)dx} \)

                  Phương pháp giải:

                  Sử dụng công thức tính tích phân để tính \(\int\limits_0^2 {f\left( x \right)dx} \) và \(\int\limits_0^1 {f\left( x \right)dx} + \int\limits_1^2 {f\left( x \right)dx} \) và so sánh kết quả.

                  Lời giải chi tiết:

                  Ta có

                  \(\int\limits_0^2 {f\left( x \right)dx} = \int\limits_0^2 {2xdx} = 2\int\limits_0^2 {xdx} = 2\left. {\left( {\frac{{{x^2}}}{2}} \right)} \right|_0^2 = 2\left( {\frac{{{2^2}}}{2} - \frac{{{0^2}}}{2}} \right) = 4\)

                  \(\int\limits_0^1 {f\left( x \right)dx} + \int\limits_1^2 {f\left( x \right)dx} = \int\limits_0^1 {2xdx} + \int\limits_1^2 {2xdx} = 2\left( {\int\limits_0^1 {xdx} + \int\limits_1^2 {xdx} } \right) = 2\left[ {\left. {\left( {\frac{{{x^2}}}{2}} \right)} \right|_0^1 + \left. {\left( {\frac{{{x^2}}}{2}} \right)} \right|_1^2} \right]\)\( = 2\left[ {\left( {\frac{{{1^2}}}{2} - \frac{{{0^2}}}{2}} \right) + \left( {\frac{{{2^2}}}{2} - \frac{{{1^2}}}{2}} \right)} \right] = 4\)

                  Vậy \(\int\limits_0^2 {f\left( x \right)dx} = \int\limits_0^1 {f\left( x \right)dx} + \int\limits_1^2 {f\left( x \right)dx} \)

                  Trả lời câu hỏi Thực hành 5 trang 19 SGK Toán 12 Chân trời sáng tạo

                  Tính

                  a) \(\int\limits_{ - 1}^{\frac{1}{2}} {\left( {4{x^3} - 5} \right)dx} - \int\limits_1^{\frac{1}{2}} {\left( {4{x^3} - 5} \right)dx} \)

                  b) \(\int\limits_0^3 {\left| {x - 1} \right|dx} \)

                  c) \(\int\limits_0^\pi {\left| {\cos x} \right|dx} \)

                  Phương pháp giải:

                  a) Sử dụng các tính chất của tích phân: \(\int\limits_a^b {f\left( x \right)dx} = - \int\limits_b^a {f\left( x \right)dx} \) và \(\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^c {f\left( x \right)dx} + \int\limits_c^b {f\left( x \right)dx} \).

                  b) Ta có \(\left| {x - 1} \right| = \left\{ {\begin{array}{*{20}{c}}{x - 1{\rm{ }}\left( {x \ge 1} \right)}\\{1 - x{\rm{ }}\left( {x < 1} \right)}\end{array}} \right.\). Từ đó ta có \(\int\limits_0^3 {\left| {x - 1} \right|dx} = \int\limits_0^1 {\left| {x - 1} \right|dx} + \int\limits_1^3 {\left| {x - 1} \right|dx} \)

                  c) Ta có \(\left| {\cos x} \right| = \left\{ {\begin{array}{*{20}{c}}{\cos x{\rm{ }}\left( {0 \le x \le \frac{\pi }{2}} \right)}\\{ - \cos x{\rm{ }}\left( {\frac{\pi }{2} \le x \le \frac{\pi }{2}} \right)}\end{array}} \right.\).

                  Từ đó ta có \(\int\limits_0^\pi {\left| {\cos x} \right|dx} = \int\limits_0^{\frac{\pi }{2}} {\left| {\cos x} \right|dx} + \int\limits_{\frac{\pi }{2}}^\pi {\left| {\cos x} \right|dx} \).

                  Lời giải chi tiết:

                  a) \(\int\limits_{ - 1}^{\frac{1}{2}} {\left( {4{x^3} - 5} \right)dx} - \int\limits_1^{\frac{1}{2}} {\left( {4{x^3} - 5} \right)dx} = \int\limits_{ - 1}^{\frac{1}{2}} {\left( {4{x^3} - 5} \right)dx} + \int\limits_{\frac{1}{2}}^1 {\left( {4{x^3} - 5} \right)dx} = \int\limits_{ - 1}^1 {\left( {4{x^3} - 5} \right)dx} \)

                  \( = 4\int\limits_{ - 1}^1 {{x^3}dx} - 5\int\limits_{ - 1}^1 {dx} = \left. {\left( {{x^4}} \right)} \right|_{ - 1}^1 - 5\left. {\left( x \right)} \right|_{ - 1}^1 = \left[ {{1^4} - {{\left( { - 1} \right)}^4}} \right] - 5\left[ {1 - \left( { - 1} \right)} \right] = - 10\)

                  b) \(\int\limits_0^3 {\left| {x - 1} \right|dx} = \int\limits_0^1 {\left| {x - 1} \right|dx} + \int\limits_1^3 {\left| {x - 1} \right|dx} = \int\limits_0^1 {\left( {1 - x} \right)dx} + \int\limits_1^3 {\left( {x - 1} \right)dx} = \left. {\left( {x - \frac{{{x^2}}}{2}} \right)} \right|_0^1 + \left. {\left( {\frac{{{x^2}}}{2} - x} \right)} \right|_1^3\)

                  \( = \left[ {\left( {1 - \frac{{{1^2}}}{2}} \right) - \left( {0 - \frac{{{0^2}}}{2}} \right)} \right] + \left[ {\left( {\frac{{{3^2}}}{2} - 3} \right) - \left( {\frac{{{1^2}}}{2} - 1} \right)} \right] = \frac{1}{2} + 2 = \frac{5}{2}\)

                  c) \(\int\limits_0^\pi {\left| {\cos x} \right|dx} = \int\limits_0^{\frac{\pi }{2}} {\cos xdx} + \int\limits_{\frac{\pi }{2}}^\pi {\left( { - \cos x} \right)dx} = \int\limits_0^{\frac{\pi }{2}} {\cos xdx} - \int\limits_{\frac{\pi }{2}}^\pi {\cos xdx} = \left. {\left( {\sin x} \right)} \right|_0^{\frac{\pi }{2}} - \left. {\left( {\sin x} \right)} \right|_{\frac{\pi }{2}}^\pi \)

                  \( = \left( {\sin \frac{\pi }{2} - \sin 0} \right) - \left( {\sin \pi - \sin \frac{\pi }{2}} \right) = 2\)

                  Trả lời câu hỏi Vận dụng 3 trang 19 SGK Toán 12 Chân trời sáng tạo

                  Biết rằng tốc độ \(v\) (km/phút) của một ca nô cao tốc thay đổi theo thời gian \(t\) (phút) như sau: \(v\left( t \right) = \left\{ {\begin{array}{*{20}{c}}{0,5t{\rm{ }}\left( {0 \le t \le 2} \right)}\\{{\rm{ }}1{\rm{ }}\left( {2 \le t < 15} \right)}\\{4 - 0,2t{\rm{ }}\left( {15 \le t \le 20} \right)}\end{array}} \right.\). Tính quãng đường ca nô di chuyển được trong khoảng thời gian từ 0 đến 20 phút.

                  Phương pháp giải:

                  Gọi \(s\left( t \right)\) là quãng đường ca nô đi được đến thời điểm \(t\) (phút).

                  Quãng đường ca nô di chuyển được trong khoảng thời gian từ 0 đến 20 phút là \(s\left( {20} \right) - s\left( 0 \right) = \int\limits_0^{20} {v\left( t \right)dt} \).Sử dụng tính chất \(\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^c {f\left( x \right)dx} + \int\limits_c^b {f\left( x \right)dx} \) của tích phân để tính \(\int\limits_0^{20} {v\left( t \right)dt} \).

                  Lời giải chi tiết:

                  Gọi \(s\left( t \right)\) (km) là quãng đường ca nô đi được đến thời điểm \(t\) (phút).

                  Quãng đường ca nô di chuyển được trong khoảng thời gian từ 0 đến 20 phút là \(s\left( {20} \right) - s\left( 0 \right) = \int\limits_0^{20} {v\left( t \right)dt} = \int\limits_0^2 {v\left( t \right)dt} + \int\limits_2^{15} {v\left( t \right)dt} + \int\limits_{15}^{20} {v\left( t \right)dt} \)

                  \( = \int\limits_0^2 {0,5tdt} + \int\limits_2^{15} {dt} + \int\limits_{15}^{20} {\left( {4 - 0,2t} \right)dt} = 0,5\left. {\left( {\frac{{{t^2}}}{2}} \right)} \right|_0^2 + \left. {\left( t \right)} \right|_2^{15} + \left. {\left( {4t - 0,1{t^2}} \right)} \right|_{15}^{20}\)

                  \(0,5\left( {\frac{{{2^2}}}{2} - \frac{{{0^2}}}{2}} \right) + \left( {15 - 2} \right) + \left[ {\left( {4.20 - 0,{{1.20}^2}} \right) - \left( {4.15 - 0,{{1.15}^2}} \right)} \right] = 16,5\) (km)

                  Giải Mục 3 Trang 16,17,18 SGK Toán 12 Tập 2 - Chân Trời Sáng Tạo: Tổng Quan và Hướng Dẫn Chi Tiết

                  Mục 3 trong SGK Toán 12 tập 2 chương trình Chân trời sáng tạo thường tập trung vào một chủ đề quan trọng trong chương trình học. Việc nắm vững kiến thức và kỹ năng trong mục này là rất cần thiết để giải quyết các bài toán phức tạp hơn và chuẩn bị cho kỳ thi tốt nghiệp THPT.

                  Nội Dung Chính của Mục 3

                  Để hiểu rõ hơn về Mục 3, chúng ta cần xác định nội dung chính mà nó đề cập đến. Thông thường, mục này sẽ bao gồm:

                  • Các khái niệm cơ bản: Định nghĩa, tính chất, và các quy tắc liên quan đến chủ đề.
                  • Các định lý quan trọng: Các định lý cần nhớ và biết cách áp dụng vào giải bài tập.
                  • Các ví dụ minh họa: Các bài toán mẫu giúp học sinh hiểu rõ cách giải và áp dụng kiến thức.
                  • Bài tập luyện tập: Các bài tập từ dễ đến khó để học sinh rèn luyện kỹ năng.

                  Giải Chi Tiết Bài Tập Trang 16

                  Trang 16 thường chứa các bài tập áp dụng các khái niệm và định lý đã học. Dưới đây là giải chi tiết một số bài tập tiêu biểu:

                  1. Bài 1: (Nêu đề bài và giải chi tiết)
                  2. Bài 2: (Nêu đề bài và giải chi tiết)
                  3. Bài 3: (Nêu đề bài và giải chi tiết)

                  Giải Chi Tiết Bài Tập Trang 17

                  Trang 17 thường chứa các bài tập nâng cao hơn, đòi hỏi học sinh phải vận dụng kiến thức một cách linh hoạt. Dưới đây là giải chi tiết một số bài tập tiêu biểu:

                  1. Bài 4: (Nêu đề bài và giải chi tiết)
                  2. Bài 5: (Nêu đề bài và giải chi tiết)
                  3. Bài 6: (Nêu đề bài và giải chi tiết)

                  Giải Chi Tiết Bài Tập Trang 18

                  Trang 18 thường chứa các bài tập tổng hợp, giúp học sinh củng cố kiến thức và kỹ năng đã học. Dưới đây là giải chi tiết một số bài tập tiêu biểu:

                  1. Bài 7: (Nêu đề bài và giải chi tiết)
                  2. Bài 8: (Nêu đề bài và giải chi tiết)
                  3. Bài 9: (Nêu đề bài và giải chi tiết)

                  Mẹo Giải Toán 12 Tập 2 Hiệu Quả

                  Để học Toán 12 tập 2 hiệu quả, các em có thể tham khảo một số mẹo sau:

                  • Nắm vững kiến thức cơ bản: Đây là nền tảng để giải quyết các bài toán phức tạp.
                  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng.
                  • Sử dụng tài liệu tham khảo: Sách giáo khoa, sách bài tập, và các trang web học tập trực tuyến.
                  • Hỏi thầy cô giáo: Nếu gặp khó khăn, đừng ngần ngại hỏi thầy cô giáo để được hướng dẫn.

                  Tusach.vn – Đồng Hành Cùng Các Em

                  Tusach.vn cam kết cung cấp lời giải chi tiết, chính xác và dễ hiểu cho tất cả các bài tập trong SGK Toán 12 tập 2 chương trình Chân trời sáng tạo. Chúng tôi hy vọng rằng với sự hỗ trợ của Tusach.vn, các em sẽ học Toán 12 một cách hiệu quả và đạt được kết quả tốt nhất.

                  Hãy truy cập Tusach.vn thường xuyên để cập nhật các lời giải mới nhất và các tài liệu học tập hữu ích khác.

                  Chủ đềTrangLink
                  Mục 316, 17, 18tusach.vn/giai-toan-12-muc-3-trang-16-17-18

                  Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

                  VỀ TUSACH.VN