Chào mừng các em học sinh đến với lời giải chi tiết bài tập mục 2 trang 16, 17, 18 SGK Toán 12 tập 1 chương trình Chân trời sáng tạo. Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất.
Bài tập trong mục này tập trung vào các kiến thức về...
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một đoạn
Trả lời câu hỏi Thực hành 3 trang 18 SGK Toán 12 Chân trời sáng tạo
Tam giác vuông có cạnh huyền bằng 5 cm có thể có diện tích lớn nhất bằng bao nhiêu?
Phương pháp giải:
Tìm hệ thức liên hệ giữa các cạnh, từ đó suy ra hàm số của diện tích tam giác vuông. Sau đó tìm đạo hàm, lập bảng biến thiên và xác định giá trị lớn nhất của hàm số
Lời giải chi tiết:
Đặt một cạnh góc vuông là x (x > 0) thì cạnh còn lại là \(\sqrt {25 - {x^2}} \)
Diện tích tam giác vuông là: \(f(x) = \frac{{1}}{2} x\sqrt {25 - {x^2}} \)
Tập xác định: \(D = (0; 5 )\)
\(f'(x) = \frac{{1}}{2}\sqrt {25 - {x^2}} - \frac{{1}}{2}. \frac{{{x^2}}}{{\sqrt {25 - {x^2}} }}\)
Tập xác định mới: \({D_1} = (0; 5 )\)
\(f'(x) = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{5\sqrt {2} }}{2}\\x = - \frac{{5\sqrt {2} }}{2}(loại)\end{array} \right.\)
Bảng biến thiên:

Từ bảng biến thiên, ta thấy \(\mathop {\max }\limits_D f(x) = f(\frac{{5\sqrt {2} }}{2}) = \frac{25}{4}\).
Vậy diện tích lớn nhất của tam giác là \(\frac{25}{4}\).
Trả lời câu hỏi Thực hành 2 trang 18 SGK Toán 12 Chân trời sáng tạo
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(g(x) = x + \frac{4}{{{x^2}}}\) trên đoạn [1;4]
Phương pháp giải:
Tìm đạo hàm g’(x), lập bảng biến thiên và xác định giá trị lớn nhất, giá trị nhỏ nhất của hàm số
Lời giải chi tiết:
Xét \(g(x) = x + \frac{4}{{{x^2}}}\) trên đoạn [1;4]
\(g'(x) = 1 - \frac{8}{{{x^3}}} = 0 \Leftrightarrow x = 2\)
Bảng biến thiên:

Từ bảng biến thiên, ta thấy \(\mathop {\min }\limits_{[1;4]} g(x) = g(2) = 3\) và \(\mathop {\max }\limits_{[1;4]} g(x) = g(1) = 5\)
Trả lời câu hỏi Khám phá 2 trang 16 SGK Toán 12 Chân trời sáng tạo
Hình 3 cho ta đồ thị của ba hàm số
\(f(x) = \frac{1}{2}{x^2}\); \(g(x) = \left\{ \begin{array}{l}\frac{1}{2}{x^2}\;\;\;\;\;\;\;\;\;\;\;neu\;x \le 2\;\\ - 4x + 10\;\;\;\;neu\;x \ge 2\end{array} \right.\) và \(h(x) = 3 - \frac{1}{2}{x^2}\) trên đoạn [-1;3]
a) Hàm số nào đạt giá trị lớn nhất tại một điểm cực đại của nó?
b) Các hàm số còn lại đạt giá trị lớn nhất tại điểm nào?

Phương pháp giải:
Quan sát đồ thị và chỉ ra điểm cực đại và giá trị lớn nhất của 3 hàm số.
Lời giải chi tiết:
a) \(h(x)\)đạt giá trị cực đại tại x = 0 và \(\mathop {\max h(x)}\limits_{[ - 1;3]} = h(0) = 3\)
b) \(\mathop {\max f(x)}\limits_{[ - 1;3]} = f(3) = \frac{9}{2}\) và \(\mathop {\max g(x)}\limits_{[ - 1;3]} = g(2) = 2\)
Trả lời câu hỏi Khám phá 2 trang 16 SGK Toán 12 Chân trời sáng tạo
Hình 3 cho ta đồ thị của ba hàm số
\(f(x) = \frac{1}{2}{x^2}\); \(g(x) = \left\{ \begin{array}{l}\frac{1}{2}{x^2}\;\;\;\;\;\;\;\;\;\;\;neu\;x \le 2\;\\ - 4x + 10\;\;\;\;neu\;x \ge 2\end{array} \right.\) và \(h(x) = 3 - \frac{1}{2}{x^2}\) trên đoạn [-1;3]
a) Hàm số nào đạt giá trị lớn nhất tại một điểm cực đại của nó?
b) Các hàm số còn lại đạt giá trị lớn nhất tại điểm nào?

Phương pháp giải:
Quan sát đồ thị và chỉ ra điểm cực đại và giá trị lớn nhất của 3 hàm số.
Lời giải chi tiết:
a) \(h(x)\)đạt giá trị cực đại tại x = 0 và \(\mathop {\max h(x)}\limits_{[ - 1;3]} = h(0) = 3\)
b) \(\mathop {\max f(x)}\limits_{[ - 1;3]} = f(3) = \frac{9}{2}\) và \(\mathop {\max g(x)}\limits_{[ - 1;3]} = g(2) = 2\)
Trả lời câu hỏi Thực hành 2 trang 18 SGK Toán 12 Chân trời sáng tạo
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(g(x) = x + \frac{4}{{{x^2}}}\) trên đoạn [1;4]
Phương pháp giải:
Tìm đạo hàm g’(x), lập bảng biến thiên và xác định giá trị lớn nhất, giá trị nhỏ nhất của hàm số
Lời giải chi tiết:
Xét \(g(x) = x + \frac{4}{{{x^2}}}\) trên đoạn [1;4]
\(g'(x) = 1 - \frac{8}{{{x^3}}} = 0 \Leftrightarrow x = 2\)
Bảng biến thiên:

Từ bảng biến thiên, ta thấy \(\mathop {\min }\limits_{[1;4]} g(x) = g(2) = 3\) và \(\mathop {\max }\limits_{[1;4]} g(x) = g(1) = 5\)
Trả lời câu hỏi Thực hành 3 trang 18 SGK Toán 12 Chân trời sáng tạo
Tam giác vuông có cạnh huyền bằng 5 cm có thể có diện tích lớn nhất bằng bao nhiêu?
Phương pháp giải:
Tìm hệ thức liên hệ giữa các cạnh, từ đó suy ra hàm số của diện tích tam giác vuông. Sau đó tìm đạo hàm, lập bảng biến thiên và xác định giá trị lớn nhất của hàm số
Lời giải chi tiết:
Đặt một cạnh góc vuông là x (x > 0) thì cạnh còn lại là \(\sqrt {25 - {x^2}} \)
Diện tích tam giác vuông là: \(f(x) = \frac{{1}}{2} x\sqrt {25 - {x^2}} \)
Tập xác định: \(D = (0; 5 )\)
\(f'(x) = \frac{{1}}{2}\sqrt {25 - {x^2}} - \frac{{1}}{2}. \frac{{{x^2}}}{{\sqrt {25 - {x^2}} }}\)
Tập xác định mới: \({D_1} = (0; 5 )\)
\(f'(x) = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{5\sqrt {2} }}{2}\\x = - \frac{{5\sqrt {2} }}{2}(loại)\end{array} \right.\)
Bảng biến thiên:

Từ bảng biến thiên, ta thấy \(\mathop {\max }\limits_D f(x) = f(\frac{{5\sqrt {2} }}{2}) = \frac{25}{4}\).
Vậy diện tích lớn nhất của tam giác là \(\frac{25}{4}\).
Mục 2 của SGK Toán 12 tập 1 chương trình Chân trời sáng tạo là một phần quan trọng, đặt nền móng cho việc hiểu và vận dụng các kiến thức về đạo hàm trong các bài học tiếp theo. Nội dung chính của mục này xoay quanh việc tìm hiểu về giới hạn của hàm số, ý nghĩa hình học của giới hạn và các tính chất cơ bản của giới hạn. Việc nắm vững kiến thức này không chỉ giúp các em giải quyết các bài tập trong SGK mà còn là bước đệm quan trọng cho việc học tập các môn khoa học khác.
Dưới đây là lời giải chi tiết cho từng bài tập trong mục 2 trang 16, 17, 18 SGK Toán 12 tập 1 Chân trời sáng tạo:
Đề bài: ... (Nội dung đề bài)
Lời giải: ... (Lời giải chi tiết, bao gồm các bước giải và giải thích rõ ràng)
Đề bài: ... (Nội dung đề bài)
Lời giải: ... (Lời giải chi tiết, bao gồm các bước giải và giải thích rõ ràng)
Đề bài: ... (Nội dung đề bài)
Lời giải: ... (Lời giải chi tiết, bao gồm các bước giải và giải thích rõ ràng)
Để hiểu sâu hơn về nội dung Mục 2, các em có thể tham khảo thêm các tài liệu sau:
Tusach.vn hy vọng rằng với lời giải chi tiết và những hướng dẫn trên, các em sẽ tự tin hơn trong việc giải quyết các bài tập về giới hạn của hàm số. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập