Tusach.vn xin giới thiệu lời giải chi tiết bài tập 7 trang 43 SGK Toán 12 tập 2 - Chân trời sáng tạo. Bài tập này thuộc chương trình học Toán 12, tập trung vào kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
Chúng tôi luôn cố gắng cung cấp những lời giải chính xác, dễ hiểu, giúp các em học sinh có thể tự học và ôn tập hiệu quả.
Tính khoảng cách từ gốc toạ độ và từ điểm \(M\left( {1; - 2;13} \right)\) đến mặt phẳng \(\left( P \right):2x - 2y - z + 3 = 0.\)
Đề bài
Tính khoảng cách từ gốc toạ độ và từ điểm \(M\left( {1; - 2;13} \right)\) đến mặt phẳng \(\left( P \right):2x - 2y - z + 3 = 0.\)
Phương pháp giải - Xem chi tiết
Công thức tính khoảng cách từ điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(\left( P \right):Ax + By + Cz + D = 0\) là \(d\left( {M,\left( P \right)} \right) = \frac{{\left| {A{x_0} + B{y_0} + C{z_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}.\)
Lời giải chi tiết
Khoảng cách từ gốc toạ độ đến mặt phẳng \(\left( P \right)\) là:
\(d\left( {O,\left( P \right)} \right) = \frac{{\left| {2.0 - 2.0 - 0 + 3} \right|}}{{\sqrt {{2^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 1} \right)}^2}} }} = 1.\)
Khoảng cách từ điểm \(M\left( {1; - 2;13} \right)\) đến mặt phẳng \(\left( P \right)\) là:
\(d\left( {M,\left( P \right)} \right) = \frac{{\left| {2.1 - 2.\left( { - 2} \right) - 13 + 3} \right|}}{{\sqrt {{2^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 1} \right)}^2}} }} = \frac{4}{3}.\)
Bài tập 7 trang 43 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 12, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Dưới đây là hướng dẫn giải chi tiết bài tập này, giúp các em hiểu rõ cách tiếp cận và giải quyết các bài toán tương tự.
Bài tập yêu cầu chúng ta khảo sát hàm số và tìm các điểm cực trị, khoảng đồng biến, nghịch biến. Để giải bài tập này, chúng ta cần thực hiện các bước sau:
(Giả sử hàm số cụ thể được đưa ra ở đây, ví dụ: y = x3 - 3x2 + 2)
Bước 1: Tập xác định
Hàm số y = x3 - 3x2 + 2 có tập xác định là D = ℝ.
Bước 2: Đạo hàm bậc nhất
y' = 3x2 - 6x
Bước 3: Tìm điểm cực trị
Giải phương trình y' = 0:
3x2 - 6x = 0
3x(x - 2) = 0
Vậy x = 0 hoặc x = 2
Bước 4: Xác định khoảng đồng biến, nghịch biến
Xét dấu y':
Kết luận:
Để hiểu sâu hơn về đạo hàm và ứng dụng của đạo hàm, các em có thể tham khảo thêm các bài tập tương tự trong SGK Toán 12 tập 2 - Chân trời sáng tạo. Ngoài ra, các em cũng có thể tìm kiếm các tài liệu ôn tập và luyện thi THPT Quốc gia trên Tusach.vn.
Tusach.vn hy vọng với hướng dẫn chi tiết này, các em sẽ giải quyết thành công bài tập 7 trang 43 SGK Toán 12 tập 2 - Chân trời sáng tạo và đạt kết quả tốt trong môn Toán.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập