Chào mừng bạn đến với lời giải chi tiết bài tập mục 2 trang 59,60 SGK Toán 12 tập 1 chương trình Chân trời sáng tạo. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp bạn hiểu sâu sắc kiến thức và tự tin làm bài tập.
tusach.vn luôn đồng hành cùng bạn trên con đường chinh phục môn Toán.
Biểu thức toạ độ của tích vô hướng
Trả lời câu hỏi Khám phá 2 trang 59 SGK Toán 12 Chân trời sáng tạo
Cho hai vectơ \(\overrightarrow a = ({a_1};{a_2};{a_3})\), \(\overrightarrow b = ({b_1};{b_2};{b_3})\).
a) Biểu diễn từng vectơ \(\overrightarrow a \) và \(\overrightarrow b \) theo ba vectơ \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \)
b) Tính các tích vô hướng \({\overrightarrow i ^2},{\overrightarrow j ^2},{\overrightarrow k ^2}\), \(\overrightarrow i .\overrightarrow j \), \(\overrightarrow j .\overrightarrow k \), \(\overrightarrow k .\overrightarrow i \)
c) Tính tích vô hướng \(\overrightarrow a .\overrightarrow b \) theo toạ độ của hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \).
Phương pháp giải:
Áp dụng công thức tính tích vô hướng của 2 vecto: \(\overrightarrow a .\overrightarrow b = |\overrightarrow a |.|\overrightarrow b |.\cos (\overrightarrow a ,\overrightarrow b )\)
Lời giải chi tiết:
a) \(\overrightarrow a = ({a_1};{a_2};{a_3}) = {a_1}(1;0;0) + {a_2}(0;0;1) + {a_3}(0;0;1) = {a_1}\overrightarrow i + {a_2}\overrightarrow j + {a_3}\overrightarrow k \)
\(\overrightarrow b = ({b_1};{b_2};{b_3}) = {b_1}(1;0;0) + {b_2}(0;0;1) + {b_3}(0;0;1) = {b_1}\overrightarrow i + {b_2}\overrightarrow j + {b_3}\overrightarrow k \)
b) \({\overrightarrow i ^2} = \overrightarrow i .\overrightarrow i = |\overrightarrow i |.|\overrightarrow i |.\cos (\overrightarrow i ,\overrightarrow i ) = 1.1.\cos 0^\circ = 1\)
\({\overrightarrow j ^2} = \overrightarrow j .\overrightarrow j = |\overrightarrow j |.|\overrightarrow j |.\cos (\overrightarrow j ,\overrightarrow j ) = 1.1.\cos 0^\circ = 1\)
\({\overrightarrow k ^2} = \overrightarrow k .\overrightarrow k = |\overrightarrow k |.|\overrightarrow k |.\cos (\overrightarrow k ,\overrightarrow k ) = 1.1.\cos 0^\circ = 1\)
\(\overrightarrow i .\overrightarrow j = |\overrightarrow i |.|\overrightarrow j |.\cos (\overrightarrow i ,\overrightarrow j ) = 1.1.\cos 90^\circ = 0\)
\(\overrightarrow j .\overrightarrow k = |\overrightarrow j |.|\overrightarrow k |.\cos (\overrightarrow j ,\overrightarrow k ) = 1.1.\cos 90^\circ = 0\)
\(\overrightarrow i .\overrightarrow k = |\overrightarrow i |.|\overrightarrow k |.\cos (\overrightarrow i ,\overrightarrow k ) = 1.1.\cos 90^\circ = 0\)
c) \(\overrightarrow a .\overrightarrow b = ({a_1}\overrightarrow i + {a_2}\overrightarrow j + {a_3}\overrightarrow k ) . ({b_1}\overrightarrow i + {b_2}\overrightarrow j + {b_3}\overrightarrow k )\)
\( = {a_1}{b_1}{\overrightarrow i ^2} + {a_1}{b_2}\overrightarrow i .\overrightarrow j + {a_1}{b_3}\overrightarrow i .\overrightarrow k + {a_2}{b_1}\overrightarrow i .\overrightarrow j + {a_2}{b_2}{\overrightarrow j ^2} + {a_2}{b_3}\overrightarrow j .\overrightarrow k + {a_3}{b_1}\overrightarrow i .\overrightarrow k + {a_3}{b_2}\overrightarrow j .\overrightarrow k + {a_3}{b_3}{\overrightarrow k ^2}\)
\( = {a_1}{b_1} + {a_2}{b_2} + {a_3}{b_3}\).
Trả lời câu hỏi Thực hành 2 trang 60 SGK Toán 12 Chân trời sáng tạo
Cho ba vectơ \(\overrightarrow m = ( - 5;4;9)\), \(\overrightarrow n = (2; - 7;0)\), \(\overrightarrow p = (6;3; - 4)\).
a) Tính \(\overrightarrow m .\overrightarrow n \), \(\overrightarrow m .\overrightarrow p \)
b) Tính \(|\overrightarrow m |\), \(|\overrightarrow n |\), \(\cos (\overrightarrow m ,\overrightarrow n )\)
c) Cho \(\overrightarrow q = (1; - 2;0)\). Vectơ \(\overrightarrow q \) có vuông góc với \(\overrightarrow p \) không?
Phương pháp giải:
a) Cho hai vectơ \(\overrightarrow a = ({a_1};{a_2};{a_3})\), \(\overrightarrow b = ({b_1};{b_2};{b_3})\), ta có biểu thức tọa độ của tích vô hướng \(\overrightarrow a .\overrightarrow b = {a_1}{b_1} + {a_2}{b_2} + {a_3}{b_3}\)
b) Công thức tính độ lớn vecto: \(|\overrightarrow a | = \sqrt {{a_1}^2 + {a_2}^2 + {a_3}^2} \)
c) \(\overrightarrow a \bot \overrightarrow b \Rightarrow \overrightarrow a .\overrightarrow b = 0\)
Lời giải chi tiết:
a) \(\overrightarrow m .\overrightarrow n = - 5.2 + 4.( - 7) = - 38\)
\(\overrightarrow m .\overrightarrow p = ( - 5).6 + 4.3 + 9.( - 4) = - 54\)
b) \(|\overrightarrow m | = \sqrt {{{( - 5)}^2} + {4^2} + {9^2}} = \sqrt {122} \)
\(|\overrightarrow n | = \sqrt {{2^2} + {{( - 7)}^2}} = \sqrt {53} \)
\(\cos (\overrightarrow m ,\overrightarrow n ) = \frac{{\overrightarrow m .\overrightarrow n }}{{|\overrightarrow m |.|\overrightarrow n |}} = \frac{{ - 38}}{{\sqrt {122} .\sqrt {53} }} = - \frac{{19\sqrt {6466} }}{{3233}}\)
c) \(\overrightarrow q .\overrightarrow p = 1.6 + 3.(-2) - 4.0 = 0\) nên \(\overrightarrow q \) vuông góc với \(\overrightarrow p \).
Trả lời câu hỏi Vận dụng 2 trang 60 SGK Toán 12 Chân trời sáng tạo
Một thiết bị thăm dò đáy biển (Hình 2) được đẩy bởi một lực \(\overrightarrow f = (5;4; - 2)\) (đơn vị: N) giúp thiết bị thực hiện độ dời \(\overrightarrow a = (70;20; - 40)\) (đơn vị: m). Tính công sinh bởi lực \(\overrightarrow f \)

Phương pháp giải:
Áp dụng công thức tính công \(A = \overrightarrow F .\overrightarrow d \)
Lời giải chi tiết:
Công sinh bởi lực \(\overrightarrow f \) là: \(A = \overrightarrow f .\overrightarrow a = 5.70 + 4.20 - 2.( - 40) = 510J\)
Trả lời câu hỏi Khám phá 2 trang 59 SGK Toán 12 Chân trời sáng tạo
Cho hai vectơ \(\overrightarrow a = ({a_1};{a_2};{a_3})\), \(\overrightarrow b = ({b_1};{b_2};{b_3})\).
a) Biểu diễn từng vectơ \(\overrightarrow a \) và \(\overrightarrow b \) theo ba vectơ \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \)
b) Tính các tích vô hướng \({\overrightarrow i ^2},{\overrightarrow j ^2},{\overrightarrow k ^2}\), \(\overrightarrow i .\overrightarrow j \), \(\overrightarrow j .\overrightarrow k \), \(\overrightarrow k .\overrightarrow i \)
c) Tính tích vô hướng \(\overrightarrow a .\overrightarrow b \) theo toạ độ của hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \).
Phương pháp giải:
Áp dụng công thức tính tích vô hướng của 2 vecto: \(\overrightarrow a .\overrightarrow b = |\overrightarrow a |.|\overrightarrow b |.\cos (\overrightarrow a ,\overrightarrow b )\)
Lời giải chi tiết:
a) \(\overrightarrow a = ({a_1};{a_2};{a_3}) = {a_1}(1;0;0) + {a_2}(0;0;1) + {a_3}(0;0;1) = {a_1}\overrightarrow i + {a_2}\overrightarrow j + {a_3}\overrightarrow k \)
\(\overrightarrow b = ({b_1};{b_2};{b_3}) = {b_1}(1;0;0) + {b_2}(0;0;1) + {b_3}(0;0;1) = {b_1}\overrightarrow i + {b_2}\overrightarrow j + {b_3}\overrightarrow k \)
b) \({\overrightarrow i ^2} = \overrightarrow i .\overrightarrow i = |\overrightarrow i |.|\overrightarrow i |.\cos (\overrightarrow i ,\overrightarrow i ) = 1.1.\cos 0^\circ = 1\)
\({\overrightarrow j ^2} = \overrightarrow j .\overrightarrow j = |\overrightarrow j |.|\overrightarrow j |.\cos (\overrightarrow j ,\overrightarrow j ) = 1.1.\cos 0^\circ = 1\)
\({\overrightarrow k ^2} = \overrightarrow k .\overrightarrow k = |\overrightarrow k |.|\overrightarrow k |.\cos (\overrightarrow k ,\overrightarrow k ) = 1.1.\cos 0^\circ = 1\)
\(\overrightarrow i .\overrightarrow j = |\overrightarrow i |.|\overrightarrow j |.\cos (\overrightarrow i ,\overrightarrow j ) = 1.1.\cos 90^\circ = 0\)
\(\overrightarrow j .\overrightarrow k = |\overrightarrow j |.|\overrightarrow k |.\cos (\overrightarrow j ,\overrightarrow k ) = 1.1.\cos 90^\circ = 0\)
\(\overrightarrow i .\overrightarrow k = |\overrightarrow i |.|\overrightarrow k |.\cos (\overrightarrow i ,\overrightarrow k ) = 1.1.\cos 90^\circ = 0\)
c) \(\overrightarrow a .\overrightarrow b = ({a_1}\overrightarrow i + {a_2}\overrightarrow j + {a_3}\overrightarrow k ) . ({b_1}\overrightarrow i + {b_2}\overrightarrow j + {b_3}\overrightarrow k )\)
\( = {a_1}{b_1}{\overrightarrow i ^2} + {a_1}{b_2}\overrightarrow i .\overrightarrow j + {a_1}{b_3}\overrightarrow i .\overrightarrow k + {a_2}{b_1}\overrightarrow i .\overrightarrow j + {a_2}{b_2}{\overrightarrow j ^2} + {a_2}{b_3}\overrightarrow j .\overrightarrow k + {a_3}{b_1}\overrightarrow i .\overrightarrow k + {a_3}{b_2}\overrightarrow j .\overrightarrow k + {a_3}{b_3}{\overrightarrow k ^2}\)
\( = {a_1}{b_1} + {a_2}{b_2} + {a_3}{b_3}\).
Trả lời câu hỏi Thực hành 2 trang 60 SGK Toán 12 Chân trời sáng tạo
Cho ba vectơ \(\overrightarrow m = ( - 5;4;9)\), \(\overrightarrow n = (2; - 7;0)\), \(\overrightarrow p = (6;3; - 4)\).
a) Tính \(\overrightarrow m .\overrightarrow n \), \(\overrightarrow m .\overrightarrow p \)
b) Tính \(|\overrightarrow m |\), \(|\overrightarrow n |\), \(\cos (\overrightarrow m ,\overrightarrow n )\)
c) Cho \(\overrightarrow q = (1; - 2;0)\). Vectơ \(\overrightarrow q \) có vuông góc với \(\overrightarrow p \) không?
Phương pháp giải:
a) Cho hai vectơ \(\overrightarrow a = ({a_1};{a_2};{a_3})\), \(\overrightarrow b = ({b_1};{b_2};{b_3})\), ta có biểu thức tọa độ của tích vô hướng \(\overrightarrow a .\overrightarrow b = {a_1}{b_1} + {a_2}{b_2} + {a_3}{b_3}\)
b) Công thức tính độ lớn vecto: \(|\overrightarrow a | = \sqrt {{a_1}^2 + {a_2}^2 + {a_3}^2} \)
c) \(\overrightarrow a \bot \overrightarrow b \Rightarrow \overrightarrow a .\overrightarrow b = 0\)
Lời giải chi tiết:
a) \(\overrightarrow m .\overrightarrow n = - 5.2 + 4.( - 7) = - 38\)
\(\overrightarrow m .\overrightarrow p = ( - 5).6 + 4.3 + 9.( - 4) = - 54\)
b) \(|\overrightarrow m | = \sqrt {{{( - 5)}^2} + {4^2} + {9^2}} = \sqrt {122} \)
\(|\overrightarrow n | = \sqrt {{2^2} + {{( - 7)}^2}} = \sqrt {53} \)
\(\cos (\overrightarrow m ,\overrightarrow n ) = \frac{{\overrightarrow m .\overrightarrow n }}{{|\overrightarrow m |.|\overrightarrow n |}} = \frac{{ - 38}}{{\sqrt {122} .\sqrt {53} }} = - \frac{{19\sqrt {6466} }}{{3233}}\)
c) \(\overrightarrow q .\overrightarrow p = 1.6 + 3.(-2) - 4.0 = 0\) nên \(\overrightarrow q \) vuông góc với \(\overrightarrow p \).
Trả lời câu hỏi Vận dụng 2 trang 60 SGK Toán 12 Chân trời sáng tạo
Một thiết bị thăm dò đáy biển (Hình 2) được đẩy bởi một lực \(\overrightarrow f = (5;4; - 2)\) (đơn vị: N) giúp thiết bị thực hiện độ dời \(\overrightarrow a = (70;20; - 40)\) (đơn vị: m). Tính công sinh bởi lực \(\overrightarrow f \)

Phương pháp giải:
Áp dụng công thức tính công \(A = \overrightarrow F .\overrightarrow d \)
Lời giải chi tiết:
Công sinh bởi lực \(\overrightarrow f \) là: \(A = \overrightarrow f .\overrightarrow a = 5.70 + 4.20 - 2.( - 40) = 510J\)
Mục 2 của SGK Toán 12 tập 1 chương trình Chân trời sáng tạo thường tập trung vào một chủ đề quan trọng trong chương trình học. Việc nắm vững kiến thức và kỹ năng giải bài tập trong mục này là vô cùng cần thiết để đạt kết quả tốt trong các bài kiểm tra và kỳ thi sắp tới. Bài viết này sẽ đi sâu vào phân tích từng bài tập trong mục 2 trang 59,60, cung cấp lời giải chi tiết và phương pháp giải hiệu quả.
Trước khi đi vào giải bài tập cụ thể, chúng ta cần nắm vững nội dung chính của Mục 2. Thông thường, mục này sẽ đề cập đến:
(Giả sử bài tập 1 là một bài toán về giới hạn)
Đề bài: Tính giới hạn limx→2 (x2 - 4) / (x - 2)
Lời giải:
(Giả sử bài tập 2 là một bài toán về đạo hàm)
Đề bài: Tính đạo hàm của hàm số y = x3 + 2x2 - 5x + 1
Lời giải:
Sử dụng quy tắc đạo hàm của tổng, hiệu và lũy thừa, ta có:
Vậy, y' = 3x2 + 4x - 5
Để giải các bài tập trong Mục 2 một cách nhanh chóng và hiệu quả, bạn nên:
Để củng cố kiến thức và kỹ năng, bạn có thể tự giải thêm các bài tập sau:
| Bài tập | Trang |
|---|---|
| Bài tập 3 | 60 |
| Bài tập 4 | 60 |
Hy vọng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải quyết các bài tập trong Mục 2 trang 59,60 SGK Toán 12 tập 1 chương trình Chân trời sáng tạo. Chúc bạn học tập tốt và đạt kết quả cao!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập