Tusach.vn xin giới thiệu lời giải chi tiết và dễ hiểu cho mục 2 trang 8,9 sách giáo khoa Toán 12 tập 2 chương trình Chân trời sáng tạo. Bài viết này sẽ giúp các em học sinh hiểu rõ các khái niệm, công thức và phương pháp giải bài tập liên quan.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác và cập nhật nhất để hỗ trợ quá trình học tập của các em.
Nguyên hàm của một số hàm số sơ cấp
Trả lời câu hỏi Khám phá 4 trang 8 SGK Toán 12 Chân trời sáng tạo
Cho hàm số \(F\left( x \right) = \ln \left| x \right|\) với \(x \ne 0\).
a) Tìm đạo hàm của \(F\left( x \right)\).
b) Từ đó, tìm \(\int {\frac{1}{x}dx} \).
Phương pháp giải:
a) Với \(x > 0\), ta có \(F\left( x \right) = \ln \left| x \right| = \ln x\). Với \(x < 0\), ta có \(F\left( x \right) = \ln \left| x \right| = \ln \left( { - x} \right)\), sau đó tính đạo hàm của \(F\left( x \right)\) trong từng trường hợp trên.
b) Từ câu a, rút ra kết luận.
Lời giải chi tiết:
a) Với \(x > 0\), ta có \(F\left( x \right) = \ln \left| x \right| = \ln x\).
Đạo hàm của \(F\left( x \right)\) trên \(\left( {0; + \infty } \right)\) là: \(F'\left( x \right) = \left( {\ln x} \right)' = \frac{1}{x}\).
Với \(x < 0\), ta có \(F\left( x \right) = \ln \left| x \right| = \ln \left( { - x} \right)\).
Đạo hàm của \(F\left( x \right)\) trên \(\left( { - \infty ;0} \right)\) là: \(F'\left( x \right) = \left( {\ln x} \right)' = \frac{1}{x}\).
Vậy ta có đạo hàm của \(F\left( x \right)\) trên \(\mathbb{R} \setminus \left\{ 0 \right\}\) là \(F'\left( x \right) = \frac{1}{x}\).
b) Từ câu a, ta có \(F\left( x \right) = \ln \left| x \right|\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{x}\).
Do đó \(\int {\frac{1}{x}dx = \ln \left| x \right| + C} \)
Trả lời câu hỏi Khám phá 3 trang 8 SGK Toán 12 Chân trời sáng tạo
a) Giải thích tại sao \(\int {0dx = C} \) và \(\int {1dx = x + C} \)
b) Tìm đạo hàm của hàm số \(F\left( x \right) = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}}\) \(\left( {\alpha \ne - 1} \right)\). Từ đó, tìm \(\int {{x^\alpha }dx} \).
Phương pháp giải:
a) Để chứng minh \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\), ta cần chỉ ra rằng \(F'\left( x \right) = f\left( x \right)\), với lần lượt \(F\left( x \right) = C\) và \(F\left( x \right) = x + C\).
b) Sử dụng công thức tính đạo hàm để tính đạo hàm của \(F\left( x \right) = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}}\) và kết luận.
Lời giải chi tiết:
a) Do \(C' = 0\) nên hàm số \(F\left( x \right) = C\) là một nguyên hàm của hàm số \(f\left( x \right) = 0\). Như vậy \(\int {0dx = C} \).
Do \(x' = 1\) nên hàm số \(F\left( x \right) = x\) là một nguyên hàm của hàm số \(f\left( x \right) = 1\). Như vậy \(\int {1dx = x + C} \).
b) Ta có \(F'\left( x \right) = \left( {\frac{{{x^{\alpha + 1}}}}{{\alpha + 1}}} \right)' = \frac{{\left( {\alpha + 1} \right){x^\alpha }}}{{\alpha + 1}} = {x^\alpha }\). Vậy ta có \(F\left( x \right) = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}}\) \(\left( {\alpha \ne - 1} \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = {x^\alpha }\). Do đó \(\int {{x^\alpha }dx} = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\).
Trả lời câu hỏi Thực hành 2 trang 8 SGK Toán 12 Chân trời sáng tạo
Tìm:
a) \(\int {{x^4}dx} \).
b) \(\int {\frac{1}{{{x^3}}}dx} \).
c) \(\int {\sqrt x dx} \)\(\left( {x > 0} \right)\).
Phương pháp giải:
Biến đổi các biểu thức về dạng \(\int {{x^\alpha }dx} \) và sử dụng công thức \(\int {{x^\alpha }dx} = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\).
Lời giải chi tiết:
a) \(\int {{x^4}dx} = \frac{{{x^{4 + 1}}}}{{4 + 1}} + C = \frac{{{x^5}}}{5} + C\).
b) \(\int {\frac{1}{{{x^3}}}dx} = \int {{x^{ - 3}}dx = \frac{{{x^{ - 3 + 1}}}}{{ - 3 + 1}} + C = \frac{{{x^{ - 2}}}}{{ - 2}} + C = - \frac{1}{{2{x^2}}} + C} \).
c) \(\int {\sqrt x dx} = \int {{x^{\frac{1}{2}}}dx} = \frac{{{x^{\frac{1}{2} + 1}}}}{{\frac{1}{2} + 1}} + C = \frac{{{x^{\frac{3}{2}}}}}{{\frac{3}{2}}} + C = \frac{2}{3}\sqrt {{x^3}} + C\).
Trả lời câu hỏi Khám phá 5 trang 9 SGK Toán 12 Chân trời sáng tạo
a) Tìm đạo hàm của các hàm số \(y = \sin x\), \(y = - \cos x\), \(y = \tan x\), \(y = - \cot x\).
b) Từ đó, tìm \(\int {\cos xdx} \), \(\int {\sin x} dx\), \(\int {\frac{1}{{{{\cos }^2}x}}dx} \), \(\int {\frac{1}{{{{\sin }^2}x}}dx} \)
Phương pháp giải:
a) Sử dụng các công thức đạo hàm để tính đạo hàm của các hàm số \(y = \sin x\), \(y = - \cos x\), \(y = \tan x\), \(y = - \cot x\).
b) Từ câu a, rút ra kết luận.
Lời giải chi tiết:
a) Ta có:
\(\left( {\sin x} \right)' = \cos x\)
\(\left( { - \cos x} \right)' = - \left( { - \sin x} \right) = \sin x\)
\(\left( {\tan x} \right)' = \frac{1}{{{{\cos }^2}x}}\)
\(\left( { - \cot x} \right)' = - \frac{{ - 1}}{{{{\sin }^2}x}} = \frac{1}{{{{\sin }^2}x}}\)
b) Từ câu a, ta có:
\(\int {\cos xdx} = \sin x + C\)
\(\int {\sin xdx} = - \cos x + C\)
\(\int {\frac{1}{{{{\cos }^2}x}}dx = \tan x + C} \)
\(\int {\frac{1}{{{{\sin }^2}x}} = - \cot x + C} \)
Trả lời câu hỏi Thực hành 3 trang 9 SGK Toán 12 Chân trời sáng tạo
Tìm nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right) = \cos x\) thoả mãn \(F\left( 0 \right) + F\left( {\frac{\pi }{2}} \right) = 0\).
Phương pháp giải:
Sử dụng công thức \(\int {\cos xdx} = \sin x + C\), sau đó sử dụng điều kiện \(F\left( 0 \right) + F\left( {\frac{\pi }{2}} \right) = 0\) để tìm hằng số \(C\).
Lời giải chi tiết:
Ta có: \(F\left( x \right) = \int {f\left( x \right)dx} = \int {\cos xdx} = \sin x + C\)
Suy ra \(F\left( 0 \right) = \sin 0 + C = C\) và \(F\left( {\frac{\pi }{2}} \right) = \sin \frac{\pi }{2} + C = 1 + C\)
Do \(F\left( 0 \right) + F\left( {\frac{\pi }{2}} \right) = 0\) nên \(C + \left( {1 + C} \right) = 0 \Rightarrow C = - \frac{1}{2}\).
Vậy \(F\left( x \right) = \sin x - \frac{1}{2}\).
Trả lời câu hỏi Khám phá 6 trang 9 SGK Toán 12 Chân trời sáng tạo
a) Tìm đạo hàm của các hàm số \(y = {e^x}\), \(y = \frac{{{a^x}}}{{\ln a}}\) với \(a > 0\), \(a \ne 1\).
b) Từ đó, tìm \(\int {{e^x}dx} \) và \(\int {{a^x}dx} \) (\(a > 0\), \(a \ne 1\)).
Phương pháp giải:
a) Sử dụng công thức tính đạo hàm để tính đạo hàm của các hàm số \(y = {e^x}\), \(y = \frac{{{a^x}}}{{\ln a}}\)(\(a > 0\), \(a \ne 1\)).
b) Từ câu a, rút ra kết luận.
Lời giải chi tiết:
a) Ta có \(\left( {{e^x}} \right)' = {e^x}\) và \(\left( {\frac{{{a^x}}}{{\ln a}}} \right)' = \frac{{{a^x}\ln a}}{{\ln a}} = {a^x}\).
b) Từ câu a, ta có:
\(\int {{e^x}dx} = {e^x} + C\)
\(\int {{a^x}dx} = \frac{{{a^x}}}{{\ln a}} + C\)
Trả lời câu hỏi Thực hành 4 trang 9 SGK Toán 12 Chân trời sáng tạo
Tìm
a) \(\int {{3^x}dx} \)
b) \(\int {{e^{2x}}dx} \)
Phương pháp giải:
Sử dụng các công thức \(\int {{e^x}dx} = {e^x} + C\) và \(\int {{a^x}dx} = \frac{{{a^x}}}{{\ln a}} + C\)
Lời giải chi tiết:
a) \(\int {{3^x}dx} = \frac{{{3^x}}}{{\ln 3}} + C\)
b) \(\int {{e^{2x}}dx} = \int {{{\left( {{e^2}} \right)}^x}dx} = \frac{{{{\left( {{e^2}} \right)}^x}}}{{\ln \left( {{e^2}} \right)}} + C = \frac{{{e^{2x}}}}{2} + C\).
Trả lời câu hỏi Khám phá 3 trang 8 SGK Toán 12 Chân trời sáng tạo
a) Giải thích tại sao \(\int {0dx = C} \) và \(\int {1dx = x + C} \)
b) Tìm đạo hàm của hàm số \(F\left( x \right) = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}}\) \(\left( {\alpha \ne - 1} \right)\). Từ đó, tìm \(\int {{x^\alpha }dx} \).
Phương pháp giải:
a) Để chứng minh \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\), ta cần chỉ ra rằng \(F'\left( x \right) = f\left( x \right)\), với lần lượt \(F\left( x \right) = C\) và \(F\left( x \right) = x + C\).
b) Sử dụng công thức tính đạo hàm để tính đạo hàm của \(F\left( x \right) = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}}\) và kết luận.
Lời giải chi tiết:
a) Do \(C' = 0\) nên hàm số \(F\left( x \right) = C\) là một nguyên hàm của hàm số \(f\left( x \right) = 0\). Như vậy \(\int {0dx = C} \).
Do \(x' = 1\) nên hàm số \(F\left( x \right) = x\) là một nguyên hàm của hàm số \(f\left( x \right) = 1\). Như vậy \(\int {1dx = x + C} \).
b) Ta có \(F'\left( x \right) = \left( {\frac{{{x^{\alpha + 1}}}}{{\alpha + 1}}} \right)' = \frac{{\left( {\alpha + 1} \right){x^\alpha }}}{{\alpha + 1}} = {x^\alpha }\). Vậy ta có \(F\left( x \right) = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}}\) \(\left( {\alpha \ne - 1} \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = {x^\alpha }\). Do đó \(\int {{x^\alpha }dx} = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\).
Trả lời câu hỏi Thực hành 2 trang 8 SGK Toán 12 Chân trời sáng tạo
Tìm:
a) \(\int {{x^4}dx} \).
b) \(\int {\frac{1}{{{x^3}}}dx} \).
c) \(\int {\sqrt x dx} \)\(\left( {x > 0} \right)\).
Phương pháp giải:
Biến đổi các biểu thức về dạng \(\int {{x^\alpha }dx} \) và sử dụng công thức \(\int {{x^\alpha }dx} = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\).
Lời giải chi tiết:
a) \(\int {{x^4}dx} = \frac{{{x^{4 + 1}}}}{{4 + 1}} + C = \frac{{{x^5}}}{5} + C\).
b) \(\int {\frac{1}{{{x^3}}}dx} = \int {{x^{ - 3}}dx = \frac{{{x^{ - 3 + 1}}}}{{ - 3 + 1}} + C = \frac{{{x^{ - 2}}}}{{ - 2}} + C = - \frac{1}{{2{x^2}}} + C} \).
c) \(\int {\sqrt x dx} = \int {{x^{\frac{1}{2}}}dx} = \frac{{{x^{\frac{1}{2} + 1}}}}{{\frac{1}{2} + 1}} + C = \frac{{{x^{\frac{3}{2}}}}}{{\frac{3}{2}}} + C = \frac{2}{3}\sqrt {{x^3}} + C\).
Trả lời câu hỏi Khám phá 4 trang 8 SGK Toán 12 Chân trời sáng tạo
Cho hàm số \(F\left( x \right) = \ln \left| x \right|\) với \(x \ne 0\).
a) Tìm đạo hàm của \(F\left( x \right)\).
b) Từ đó, tìm \(\int {\frac{1}{x}dx} \).
Phương pháp giải:
a) Với \(x > 0\), ta có \(F\left( x \right) = \ln \left| x \right| = \ln x\). Với \(x < 0\), ta có \(F\left( x \right) = \ln \left| x \right| = \ln \left( { - x} \right)\), sau đó tính đạo hàm của \(F\left( x \right)\) trong từng trường hợp trên.
b) Từ câu a, rút ra kết luận.
Lời giải chi tiết:
a) Với \(x > 0\), ta có \(F\left( x \right) = \ln \left| x \right| = \ln x\).
Đạo hàm của \(F\left( x \right)\) trên \(\left( {0; + \infty } \right)\) là: \(F'\left( x \right) = \left( {\ln x} \right)' = \frac{1}{x}\).
Với \(x < 0\), ta có \(F\left( x \right) = \ln \left| x \right| = \ln \left( { - x} \right)\).
Đạo hàm của \(F\left( x \right)\) trên \(\left( { - \infty ;0} \right)\) là: \(F'\left( x \right) = \left( {\ln x} \right)' = \frac{1}{x}\).
Vậy ta có đạo hàm của \(F\left( x \right)\) trên \(\mathbb{R} \setminus \left\{ 0 \right\}\) là \(F'\left( x \right) = \frac{1}{x}\).
b) Từ câu a, ta có \(F\left( x \right) = \ln \left| x \right|\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{x}\).
Do đó \(\int {\frac{1}{x}dx = \ln \left| x \right| + C} \)
Trả lời câu hỏi Khám phá 5 trang 9 SGK Toán 12 Chân trời sáng tạo
a) Tìm đạo hàm của các hàm số \(y = \sin x\), \(y = - \cos x\), \(y = \tan x\), \(y = - \cot x\).
b) Từ đó, tìm \(\int {\cos xdx} \), \(\int {\sin x} dx\), \(\int {\frac{1}{{{{\cos }^2}x}}dx} \), \(\int {\frac{1}{{{{\sin }^2}x}}dx} \)
Phương pháp giải:
a) Sử dụng các công thức đạo hàm để tính đạo hàm của các hàm số \(y = \sin x\), \(y = - \cos x\), \(y = \tan x\), \(y = - \cot x\).
b) Từ câu a, rút ra kết luận.
Lời giải chi tiết:
a) Ta có:
\(\left( {\sin x} \right)' = \cos x\)
\(\left( { - \cos x} \right)' = - \left( { - \sin x} \right) = \sin x\)
\(\left( {\tan x} \right)' = \frac{1}{{{{\cos }^2}x}}\)
\(\left( { - \cot x} \right)' = - \frac{{ - 1}}{{{{\sin }^2}x}} = \frac{1}{{{{\sin }^2}x}}\)
b) Từ câu a, ta có:
\(\int {\cos xdx} = \sin x + C\)
\(\int {\sin xdx} = - \cos x + C\)
\(\int {\frac{1}{{{{\cos }^2}x}}dx = \tan x + C} \)
\(\int {\frac{1}{{{{\sin }^2}x}} = - \cot x + C} \)
Trả lời câu hỏi Thực hành 3 trang 9 SGK Toán 12 Chân trời sáng tạo
Tìm nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right) = \cos x\) thoả mãn \(F\left( 0 \right) + F\left( {\frac{\pi }{2}} \right) = 0\).
Phương pháp giải:
Sử dụng công thức \(\int {\cos xdx} = \sin x + C\), sau đó sử dụng điều kiện \(F\left( 0 \right) + F\left( {\frac{\pi }{2}} \right) = 0\) để tìm hằng số \(C\).
Lời giải chi tiết:
Ta có: \(F\left( x \right) = \int {f\left( x \right)dx} = \int {\cos xdx} = \sin x + C\)
Suy ra \(F\left( 0 \right) = \sin 0 + C = C\) và \(F\left( {\frac{\pi }{2}} \right) = \sin \frac{\pi }{2} + C = 1 + C\)
Do \(F\left( 0 \right) + F\left( {\frac{\pi }{2}} \right) = 0\) nên \(C + \left( {1 + C} \right) = 0 \Rightarrow C = - \frac{1}{2}\).
Vậy \(F\left( x \right) = \sin x - \frac{1}{2}\).
Trả lời câu hỏi Khám phá 6 trang 9 SGK Toán 12 Chân trời sáng tạo
a) Tìm đạo hàm của các hàm số \(y = {e^x}\), \(y = \frac{{{a^x}}}{{\ln a}}\) với \(a > 0\), \(a \ne 1\).
b) Từ đó, tìm \(\int {{e^x}dx} \) và \(\int {{a^x}dx} \) (\(a > 0\), \(a \ne 1\)).
Phương pháp giải:
a) Sử dụng công thức tính đạo hàm để tính đạo hàm của các hàm số \(y = {e^x}\), \(y = \frac{{{a^x}}}{{\ln a}}\)(\(a > 0\), \(a \ne 1\)).
b) Từ câu a, rút ra kết luận.
Lời giải chi tiết:
a) Ta có \(\left( {{e^x}} \right)' = {e^x}\) và \(\left( {\frac{{{a^x}}}{{\ln a}}} \right)' = \frac{{{a^x}\ln a}}{{\ln a}} = {a^x}\).
b) Từ câu a, ta có:
\(\int {{e^x}dx} = {e^x} + C\)
\(\int {{a^x}dx} = \frac{{{a^x}}}{{\ln a}} + C\)
Trả lời câu hỏi Thực hành 4 trang 9 SGK Toán 12 Chân trời sáng tạo
Tìm
a) \(\int {{3^x}dx} \)
b) \(\int {{e^{2x}}dx} \)
Phương pháp giải:
Sử dụng các công thức \(\int {{e^x}dx} = {e^x} + C\) và \(\int {{a^x}dx} = \frac{{{a^x}}}{{\ln a}} + C\)
Lời giải chi tiết:
a) \(\int {{3^x}dx} = \frac{{{3^x}}}{{\ln 3}} + C\)
b) \(\int {{e^{2x}}dx} = \int {{{\left( {{e^2}} \right)}^x}dx} = \frac{{{{\left( {{e^2}} \right)}^x}}}{{\ln \left( {{e^2}} \right)}} + C = \frac{{{e^{2x}}}}{2} + C\).
Mục 2 trong SGK Toán 12 tập 2 Chân trời sáng tạo thường tập trung vào một chủ đề quan trọng trong chương trình học. Việc nắm vững kiến thức và kỹ năng trong mục này là rất cần thiết để giải quyết các bài tập phức tạp hơn và chuẩn bị cho kỳ thi tốt nghiệp THPT.
Thông thường, mục 2 trang 8,9 sẽ đề cập đến các nội dung sau (tùy thuộc vào chương cụ thể):
Dưới đây là hướng dẫn giải chi tiết các bài tập trong mục 2 trang 8,9 SGK Toán 12 tập 2 Chân trời sáng tạo. Chúng tôi sẽ phân tích từng bài tập, đưa ra phương pháp giải phù hợp và cung cấp đáp án chính xác.
Đề bài: (Giả sử đề bài là một bài toán cụ thể về đạo hàm)
Lời giải:
Kết quả: (Đáp án của bài toán)
Đề bài: (Giả sử đề bài là một bài toán về tích phân)
Lời giải:
Kết quả: (Đáp án của bài toán)
Để giải các bài tập trong mục 2 trang 8,9 SGK Toán 12 tập 2 Chân trời sáng tạo một cách nhanh chóng và hiệu quả, bạn có thể áp dụng một số mẹo sau:
Khi giải các bài tập Toán 12, bạn cần chú ý đến các yếu tố sau:
Hy vọng rằng với hướng dẫn chi tiết này, các em học sinh sẽ tự tin hơn khi giải các bài tập trong mục 2 trang 8,9 SGK Toán 12 tập 2 Chân trời sáng tạo. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập