Bài tập 8 trang 28 SGK Toán 12 tập 2 thuộc chương trình Toán 12 Chân trời sáng tạo, tập trung vào việc ôn tập về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Tusach.vn xin giới thiệu lời giải chi tiết, dễ hiểu, giúp các em học sinh hiểu rõ bản chất bài toán và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác và cập nhật nhất để hỗ trợ tối đa cho quá trình học tập của các bạn.
Giá trị của (intlimits_0^2 {left| {{x^2} - x} right|dx} ) bằng: A. (frac{2}{3}) B. (1) C. (frac{1}{3}) D. (2)
Đề bài
Giá trị của \(\int\limits_0^2 {\left| {{x^2} - x} \right|dx} \) bằng:
A. \(\frac{2}{3}\)
B. \(1\)
C. \(\frac{1}{3}\)
D. \(2\)
Phương pháp giải - Xem chi tiết
Sử dụng các tính chất của tích phân để phá dấu giá trị tuyệt đối và tính giá trị của tích phân trên.
Lời giải chi tiết
Ta có \({x^2} - x = 0 \Leftrightarrow x = 0\) hoặc \(x = 1\).
Như vậy,
\(\int\limits_0^2 {\left| {{x^2} - x} \right|dx} = \int\limits_0^1 {\left| {{x^2} - x} \right|dx} + \int\limits_1^2 {\left| {{x^2} - x} \right|dx} = \left| {\int\limits_0^1 {\left( {{x^2} - x} \right)dx} } \right| + \left| {\int\limits_1^2 {\left( {{x^2} - x} \right)dx} } \right|\)
\( = \left| {\left. {\left( {\frac{{{x^3}}}{3} - \frac{{{x^2}}}{2}} \right)} \right|_0^1} \right| + \left| {\left. {\left( {\frac{{{x^3}}}{3} - \frac{{{x^2}}}{2}} \right)} \right|_1^2} \right| = \left| {\frac{{ - 1}}{6} - 0} \right| + \left| {\frac{2}{3} - \left( { - \frac{1}{6}} \right)} \right| = 1\)
Vậy đáp án đúng là B.
Bài tập 8 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Dưới đây là hướng dẫn giải chi tiết bài tập này, giúp các bạn học sinh hiểu rõ cách tiếp cận và giải quyết bài toán.
Bài tập yêu cầu khảo sát hàm số y = x3 - 3x2 + 2. Cụ thể, học sinh cần thực hiện các bước sau:
Bước 1: Xác định tập xác định
Hàm số y = x3 - 3x2 + 2 là một hàm đa thức, do đó tập xác định của hàm số là R.
Bước 2: Tính đạo hàm bậc nhất và tìm điểm cực trị
Đạo hàm bậc nhất của hàm số là: y' = 3x2 - 6x
Để tìm điểm cực trị, ta giải phương trình y' = 0:
3x2 - 6x = 0 ⇔ 3x(x - 2) = 0
Vậy, phương trình có hai nghiệm: x = 0 và x = 2
Ta xét dấu của y' trên các khoảng xác định:
Vậy, hàm số đạt cực đại tại x = 0 và cực tiểu tại x = 2.
Giá trị cực đại là: y(0) = 2
Giá trị cực tiểu là: y(2) = 23 - 3(22) + 2 = 8 - 12 + 2 = -2
Bước 3: Lập bảng biến thiên
| x | -∞ | 0 | 2 | +∞ | |
|---|---|---|---|---|---|
| y' | + | 0 | - | 0 | + |
| y | -∞ | 2 | -2 | +∞ |
Bước 4: Vẽ đồ thị hàm số
Dựa vào bảng biến thiên, ta có thể vẽ được đồ thị hàm số y = x3 - 3x2 + 2. Đồ thị hàm số đi qua các điểm (0, 2) và (2, -2).
Hy vọng hướng dẫn giải chi tiết bài tập 8 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo này sẽ giúp các bạn học sinh hiểu rõ hơn về bài toán và đạt kết quả tốt trong học tập. Tusach.vn luôn đồng hành cùng các bạn trên con đường chinh phục kiến thức!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập