Tusach.vn xin giới thiệu lời giải chi tiết bài tập mục 2 trang 75, 76, 77 SGK Toán 12 tập 1 Chân trời sáng tạo. Bài viết này cung cấp đáp án chính xác, dễ hiểu, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng, cập nhật nhanh chóng và đầy đủ nhất để hỗ trợ quá trình học tập của các bạn.
Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm
Trả lời câu hỏi Khám phá trang 75 SGK Toán 12 Chân trời sáng tạo
a) Trong biểu đồ ở Khởi động, cột thứ nhất biểu diễn số lượng học sinh có chiều cao từ 160cm đến dưới 164cm; cột thứ hai biểu diễn số lượng học sinh có chiều cao từ 164cm đến dưới 168cm, … .

Hãy lập bảng tần số ghép nhóm cho mẫu số liệu ở , xác định giá trị đại diện của mỗi nhóm và tính số trung bình của mẫu số liệu ghép nhóm.
b) Xét mẫu số liệu mới gồm các giá trị đại diện của các nhóm, tần số của mỗi giá trị đại diện bằng tần số của nhóm tương ứng. Hãy tính phương sai và độ lệch chuẩn của mẫu số liệu mới.
Phương pháp giải:
a) Khi biểu diễn mẫu số liệu liên tục bởi biểu đồ tần số có dạng cột, các cột thường được vẽ kề nhau. Ta quy ước: cột có đầu mút trái là a và có đầu mút phải là b trên trục hoành biểu diễn cho tần số của nhóm [a; b). Giá trị đại diện của nhóm [a; b) là \(c = \frac{1}{2}(a + b)\)
b) Phương sai của mẫu số liệu ghép nhóm, kí hiệu \({S^2}\), được tính bởi công thức:
\({S^2} = \frac{1}{n}[{n_1}{({c_1} - \overline x )^2} + {n_2}{({c_2} - \overline x )^2} + ... + {n_k}{({c_k} - \overline x )^2}]\)
Trong đó: \(n = {n_1} + {n_2} + ... + {n_k}\) là cỡ mẫu
\(\overline x = \frac{1}{n}({n_1}{c_1} + {n_2}{c_2} + ... + {n_k}{c_k})\) là số trung bình
Độ lệch chuẩn của mẫu số liệu ghép nhóm, kí hiệu \(S\), là căn bậc hai số học của phương sai.
Lời giải chi tiết:
a) 
b) 
Cỡ mẫu: n = 21
Giá trị trung bình của mẫu số liệu mới: \(\overline x = \frac{1}{n}({n_1}{c_1} + {n_2}{c_2} + ... + {n_k}{c_k}) = \frac{1}{{21}}(3.162 + 5.166 + 8.170 + 4.174 + 1.178) = \frac{{3550}}{{21}}\)
Phương sai của mẫu số liệu mới: \({S^2} = \frac{1}{n}[{n_1}{({c_1} - \overline x )^2} + {n_2}{({c_2} - \overline x )^2} + ... + {n_k}{({c_k} - \overline x )^2}] = \frac{1}{{21}}[3{(162 - \frac{{3550}}{{21}})^2} + 5{(166 - \frac{{3550}}{{21}})^2} + ... + 1{(178 - \frac{{3550}}{{21}})^2}] = \frac{{8000}}{{441}}\)
Độ lệch chuẩn của mẫu số liệu mới: \(\sigma = \sqrt {{S^2}} = \sqrt {\frac{{8000}}{{441}}} = \frac{{40\sqrt 5 }}{{21}}\)
Trả lời câu hỏi Thực hành 1 trang 82 SGK Toán 12 Chân trời sáng tạo
Hãy tính phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm ở Khởi động

Phương pháp giải:
Phương sai của mẫu số liệu ghép nhóm, kí hiệu \({S^2}\), được tính bởi công thức:
\({S^2} = \frac{1}{n}[{n_1}{({c_1} - \overline x )^2} + {n_2}{({c_2} - \overline x )^2} + ... + {n_k}{({c_k} - \overline x )^2}]\)
Trong đó: \(n = {n_1} + {n_2} + ... + {n_k}\) là cỡ mẫu
\(\overline x = \frac{1}{n}({n_1}{c_1} + {n_2}{c_2} + ... + {n_k}{c_k})\) là số trung bình
Độ lệch chuẩn của mẫu số liệu ghép nhóm, kí hiệu \(S\), là căn bậc hai số học của phương sai.
Lời giải chi tiết:

Cỡ mẫu: n = 21
Giá trị trung bình của mẫu số liệu mới: \(\overline x = \frac{1}{n}({n_1}{c_1} + {n_2}{c_2} + ... + {n_k}{c_k}) = \frac{1}{{21}}(3.162 + 5.166 + 8.170 + 4.174 + 1.178) = \frac{{3550}}{{21}}\)
Phương sai của mẫu số liệu mới: \({S^2} = \frac{1}{n}[{n_1}{({c_1} - \overline x )^2} + {n_2}{({c_2} - \overline x )^2} + ... + {n_k}{({c_k} - \overline x )^2}] = \frac{1}{{21}}[3{(162 - \frac{{3550}}{{21}})^2} + 5{(166 - \frac{{3550}}{{21}})^2} + ... + 1{(178 - \frac{{3550}}{{21}})^2}] = \frac{{8000}}{{441}}\)
Độ lệch chuẩn của mẫu số liệu mới: \(\sigma = \sqrt {{S^2}} = \sqrt {\frac{{8000}}{{441}}} = \frac{{40\sqrt 5 }}{{21}}\)
Trả lời câu hỏi Thực hành 2 trang 82 SGK Toán 12 Chân trời sáng tạo
Mai và Ngọc cùng sử dụng vòng đeo tay thông minh để ghi lại số bước chân hai bạn đi mỗi ngày trong một tháng. Kết quả được ghi lại ở bảng sau:

a) Hãy tính số trung bình và độ lệch chuẩn của mẫu số liệu ghép nhóm trên.
b) Nếu so sánh theo độ lệch chuẩn thì bạn nào có số lượng bước chân đi mỗi ngày đều đặn hơn?
Phương pháp giải:
a) Phương sai của mẫu số liệu ghép nhóm, kí hiệu \({S^2}\), được tính bởi công thức:
\({S^2} = \frac{1}{n}[{n_1}{({c_1} - \overline x )^2} + {n_2}{({c_2} - \overline x )^2} + ... + {n_k}{({c_k} - \overline x )^2}]\)
Trong đó: \(n = {n_1} + {n_2} + ... + {n_k}\) là cỡ mẫu
\(\overline x = \frac{1}{n}({n_1}{c_1} + {n_2}{c_2} + ... + {n_k}{c_k})\) là số trung bình
Độ lệch chuẩn của mẫu số liệu ghép nhóm, kí hiệu \(S\), là căn bậc hai số học của phương sai.
b) Độ lệch chuẩn nhỏ hơn thì số liệu đều hơn
Lời giải chi tiết:

a) Cỡ mẫu: n = 30
- Xét mẫu số liệu của Mai:
Số trung bình: \(\overline {{x_1}} = \frac{{6.4 + 7.6 + 6.8 + 6.10 + 5.12}}{{30}} = 7,8\)
Phương sai: \({S_1}^2 = \frac{{({{6.4}^2} + {{7.6}^2} + {{6.8}^2} + {{6.10}^2} + {{5.12}^2})}}{{30}} - 7,{8^2} = 7,56\)
Độ lệch chuẩn: \({\sigma _1} = \sqrt {7,56} \approx 2,75\)
- Xét mẫu số liệu của Ngọc:
Số trung bình: \(\overline {{x_2}} = \frac{{2.4 + 5.6 + 13.8 + 8.10 + 2.12}}{{30}} = 8,2\)
Phương sai: \({S_2}^2 = \frac{{({{2.4}^2} + {{5.6}^2} + {{13.8}^2} + {{8.10}^2} + {{2.12}^2})}}{{30}} - 8,{2^2} \approx 3,83\)
Độ lệch chuẩn: \({\sigma _2} = \sqrt {3,83} \approx 1,96\)
b) Nếu so sánh theo độ lệch chuẩn thì bạn Ngọc có số lượng bước chân đi mỗi ngày đều đặn hơn
Trả lời câu hỏi Khám phá trang 75 SGK Toán 12 Chân trời sáng tạo
a) Trong biểu đồ ở Khởi động, cột thứ nhất biểu diễn số lượng học sinh có chiều cao từ 160cm đến dưới 164cm; cột thứ hai biểu diễn số lượng học sinh có chiều cao từ 164cm đến dưới 168cm, … .

Hãy lập bảng tần số ghép nhóm cho mẫu số liệu ở , xác định giá trị đại diện của mỗi nhóm và tính số trung bình của mẫu số liệu ghép nhóm.
b) Xét mẫu số liệu mới gồm các giá trị đại diện của các nhóm, tần số của mỗi giá trị đại diện bằng tần số của nhóm tương ứng. Hãy tính phương sai và độ lệch chuẩn của mẫu số liệu mới.
Phương pháp giải:
a) Khi biểu diễn mẫu số liệu liên tục bởi biểu đồ tần số có dạng cột, các cột thường được vẽ kề nhau. Ta quy ước: cột có đầu mút trái là a và có đầu mút phải là b trên trục hoành biểu diễn cho tần số của nhóm [a; b). Giá trị đại diện của nhóm [a; b) là \(c = \frac{1}{2}(a + b)\)
b) Phương sai của mẫu số liệu ghép nhóm, kí hiệu \({S^2}\), được tính bởi công thức:
\({S^2} = \frac{1}{n}[{n_1}{({c_1} - \overline x )^2} + {n_2}{({c_2} - \overline x )^2} + ... + {n_k}{({c_k} - \overline x )^2}]\)
Trong đó: \(n = {n_1} + {n_2} + ... + {n_k}\) là cỡ mẫu
\(\overline x = \frac{1}{n}({n_1}{c_1} + {n_2}{c_2} + ... + {n_k}{c_k})\) là số trung bình
Độ lệch chuẩn của mẫu số liệu ghép nhóm, kí hiệu \(S\), là căn bậc hai số học của phương sai.
Lời giải chi tiết:
a) 
b) 
Cỡ mẫu: n = 21
Giá trị trung bình của mẫu số liệu mới: \(\overline x = \frac{1}{n}({n_1}{c_1} + {n_2}{c_2} + ... + {n_k}{c_k}) = \frac{1}{{21}}(3.162 + 5.166 + 8.170 + 4.174 + 1.178) = \frac{{3550}}{{21}}\)
Phương sai của mẫu số liệu mới: \({S^2} = \frac{1}{n}[{n_1}{({c_1} - \overline x )^2} + {n_2}{({c_2} - \overline x )^2} + ... + {n_k}{({c_k} - \overline x )^2}] = \frac{1}{{21}}[3{(162 - \frac{{3550}}{{21}})^2} + 5{(166 - \frac{{3550}}{{21}})^2} + ... + 1{(178 - \frac{{3550}}{{21}})^2}] = \frac{{8000}}{{441}}\)
Độ lệch chuẩn của mẫu số liệu mới: \(\sigma = \sqrt {{S^2}} = \sqrt {\frac{{8000}}{{441}}} = \frac{{40\sqrt 5 }}{{21}}\)
Trả lời câu hỏi Thực hành 1 trang 82 SGK Toán 12 Chân trời sáng tạo
Hãy tính phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm ở Khởi động

Phương pháp giải:
Phương sai của mẫu số liệu ghép nhóm, kí hiệu \({S^2}\), được tính bởi công thức:
\({S^2} = \frac{1}{n}[{n_1}{({c_1} - \overline x )^2} + {n_2}{({c_2} - \overline x )^2} + ... + {n_k}{({c_k} - \overline x )^2}]\)
Trong đó: \(n = {n_1} + {n_2} + ... + {n_k}\) là cỡ mẫu
\(\overline x = \frac{1}{n}({n_1}{c_1} + {n_2}{c_2} + ... + {n_k}{c_k})\) là số trung bình
Độ lệch chuẩn của mẫu số liệu ghép nhóm, kí hiệu \(S\), là căn bậc hai số học của phương sai.
Lời giải chi tiết:

Cỡ mẫu: n = 21
Giá trị trung bình của mẫu số liệu mới: \(\overline x = \frac{1}{n}({n_1}{c_1} + {n_2}{c_2} + ... + {n_k}{c_k}) = \frac{1}{{21}}(3.162 + 5.166 + 8.170 + 4.174 + 1.178) = \frac{{3550}}{{21}}\)
Phương sai của mẫu số liệu mới: \({S^2} = \frac{1}{n}[{n_1}{({c_1} - \overline x )^2} + {n_2}{({c_2} - \overline x )^2} + ... + {n_k}{({c_k} - \overline x )^2}] = \frac{1}{{21}}[3{(162 - \frac{{3550}}{{21}})^2} + 5{(166 - \frac{{3550}}{{21}})^2} + ... + 1{(178 - \frac{{3550}}{{21}})^2}] = \frac{{8000}}{{441}}\)
Độ lệch chuẩn của mẫu số liệu mới: \(\sigma = \sqrt {{S^2}} = \sqrt {\frac{{8000}}{{441}}} = \frac{{40\sqrt 5 }}{{21}}\)
Trả lời câu hỏi Thực hành 2 trang 82 SGK Toán 12 Chân trời sáng tạo
Mai và Ngọc cùng sử dụng vòng đeo tay thông minh để ghi lại số bước chân hai bạn đi mỗi ngày trong một tháng. Kết quả được ghi lại ở bảng sau:

a) Hãy tính số trung bình và độ lệch chuẩn của mẫu số liệu ghép nhóm trên.
b) Nếu so sánh theo độ lệch chuẩn thì bạn nào có số lượng bước chân đi mỗi ngày đều đặn hơn?
Phương pháp giải:
a) Phương sai của mẫu số liệu ghép nhóm, kí hiệu \({S^2}\), được tính bởi công thức:
\({S^2} = \frac{1}{n}[{n_1}{({c_1} - \overline x )^2} + {n_2}{({c_2} - \overline x )^2} + ... + {n_k}{({c_k} - \overline x )^2}]\)
Trong đó: \(n = {n_1} + {n_2} + ... + {n_k}\) là cỡ mẫu
\(\overline x = \frac{1}{n}({n_1}{c_1} + {n_2}{c_2} + ... + {n_k}{c_k})\) là số trung bình
Độ lệch chuẩn của mẫu số liệu ghép nhóm, kí hiệu \(S\), là căn bậc hai số học của phương sai.
b) Độ lệch chuẩn nhỏ hơn thì số liệu đều hơn
Lời giải chi tiết:

a) Cỡ mẫu: n = 30
- Xét mẫu số liệu của Mai:
Số trung bình: \(\overline {{x_1}} = \frac{{6.4 + 7.6 + 6.8 + 6.10 + 5.12}}{{30}} = 7,8\)
Phương sai: \({S_1}^2 = \frac{{({{6.4}^2} + {{7.6}^2} + {{6.8}^2} + {{6.10}^2} + {{5.12}^2})}}{{30}} - 7,{8^2} = 7,56\)
Độ lệch chuẩn: \({\sigma _1} = \sqrt {7,56} \approx 2,75\)
- Xét mẫu số liệu của Ngọc:
Số trung bình: \(\overline {{x_2}} = \frac{{2.4 + 5.6 + 13.8 + 8.10 + 2.12}}{{30}} = 8,2\)
Phương sai: \({S_2}^2 = \frac{{({{2.4}^2} + {{5.6}^2} + {{13.8}^2} + {{8.10}^2} + {{2.12}^2})}}{{30}} - 8,{2^2} \approx 3,83\)
Độ lệch chuẩn: \({\sigma _2} = \sqrt {3,83} \approx 1,96\)
b) Nếu so sánh theo độ lệch chuẩn thì bạn Ngọc có số lượng bước chân đi mỗi ngày đều đặn hơn
Mục 2 của SGK Toán 12 tập 1 Chân trời sáng tạo tập trung vào các kiến thức về giới hạn của hàm số. Đây là một trong những chủ đề quan trọng, nền tảng cho việc học tập các kiến thức nâng cao hơn trong chương trình Toán 12. Việc nắm vững các khái niệm, định lý và kỹ năng giải bài tập liên quan đến giới hạn là vô cùng cần thiết để đạt kết quả tốt trong các kỳ thi.
Dưới đây là lời giải chi tiết cho từng bài tập trong mục 2 trang 75, 76, 77 SGK Toán 12 tập 1 Chân trời sáng tạo:
Đề bài: Tính các giới hạn sau: a) lim (x→2) (x^2 + 3x - 1); b) lim (x→-1) (2x^3 - 5x + 2)
Lời giải:
Đề bài: Tính các giới hạn sau: a) lim (x→3) (x - 3) / (x^2 - 9); b) lim (x→1) (x^2 - 1) / (x - 1)
Lời giải:
Đề bài: Tính giới hạn: lim (x→0) sin(x) / x
Lời giải:
Đây là một giới hạn lượng giác cơ bản. Sử dụng định lý giới hạn đặc biệt, ta có: lim (x→0) sin(x) / x = 1
Hy vọng với lời giải chi tiết và các hướng dẫn trên, các bạn học sinh sẽ hiểu rõ hơn về Mục 2 SGK Toán 12 tập 1 Chân trời sáng tạo và tự tin giải các bài tập liên quan đến giới hạn. Chúc các bạn học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập