Chào mừng bạn đến với lời giải chi tiết bài tập mục 2 trang 33, 34 SGK Toán 12 tập 2 chương trình Chân trời sáng tạo. Tại tusach.vn, chúng tôi luôn cố gắng cung cấp những lời giải chính xác, dễ hiểu và đầy đủ nhất.
Mục tiêu của chúng tôi là giúp các bạn học sinh tự tin hơn trong việc học tập và ôn luyện môn Toán.
Trong không gian (Oxyz), cho mặt phẳng (left( alpha right)) có cặp vectơ chỉ phương (vec a = left( {{a_1};{a_2};{a_3}} right)), (vec b = left( {{b_1};{b_2};{b_3}} right)). Xét vectơ (vec n = left( {{a_2}{b_3} - {a_3}{b_2};{a_3}{b_1} - {a_1}{b_3};{a_1}{b_2} - {a_2}{b_1}} right)).
Trả lời câu hỏi Hoạt động 2 trang 33, 34 SGK Toán 12 Chân trời sáng tạo
Trong không gian \(Oxyz\), cho mặt phẳng \(\left( \alpha \right)\) có cặp vectơ chỉ phương \(\vec a = \left( {{a_1};{a_2};{a_3}} \right)\), \(\vec b = \left( {{b_1};{b_2};{b_3}} \right)\). Xét vectơ \(\vec n = \left( {{a_2}{b_3} - {a_3}{b_2};{a_3}{b_1} - {a_1}{b_3};{a_1}{b_2} - {a_2}{b_1}} \right)\).
a) Vectơ \(\vec n\) có khác \(\vec 0\) hay không?
b) Tính \(\vec a.\vec n\); \(\vec b.\vec n\).
c) Vectơ \(\vec n\) có phải là vectơ pháp tuyến của mặt phẳng \(\left( \alpha \right)\) không?
Phương pháp giải:
a) Giả sử \(\vec n = \vec 0\), sau đó chứng minh rằng \(\vec a\) và \(\vec b\) là hai vectơ cùng phương. Điều này là vô lí do \(\vec a\) và \(\vec b\) là một cặp vectơ chỉ phương của \(\left( \alpha \right)\).
b) Sử dụng công thức tích vô hướng của hai vectơ trong không gian.
c) Để chứng minh \(\vec n\) là vectơ pháp tuyến của mặt phẳng \(\left( \alpha \right)\), ta chỉ ra rằng \(\vec n\) có giá vuông góc với mặt phẳng \(\left( \alpha \right)\).
Lời giải chi tiết:
a) Giả sử \(\vec n = \vec 0\), khi đó \({a_2}{b_3} - {a_3}{b_2} = {a_3}{b_1} - {a_1}{b_3} = {a_1}{b_2} - {a_2}{b_1} = 0\).
Với trường hợp \({b_1}\), \({b_2}\), \({b_3}\) cùng khác 0, ta suy ra \(\frac{{{a_1}}}{{{b_1}}} = \frac{{{a_2}}}{{{b_2}}} = \frac{{{a_3}}}{{{b_3}}}\), điều này có nghĩa \(\vec a\) và \(\vec b\) là hai vectơ cùng phương.
Nếu \({b_1} = 0\) thì \({a_1} = 0\), ta vẫn thu được kết quả \(\vec a\) và \(\vec b\) là hai vectơ cùng phương.
Các trường hợp còn lại cho ra kết quả tương tự.
Như vậy \(\vec a\) và \(\vec b\) là hai vectơ cùng phương.
Mặt khác, do \(\vec a\) và \(\vec b\) là một cặp vectơ chỉ phương của \(\left( \alpha \right)\), nên \(\vec a\) và \(\vec b\) là hai vectơ không cùng phương, mâu thuẫn.
Như vậy \(\vec n \ne \vec 0\).
b) Ta có:
+)\(\vec a.\vec n = {a_1}\left( {{a_2}{b_3} - {a_3}{b_2}} \right) + {a_2}\left( {{a_3}{b_1} - {a_1}{b_3}} \right) + {a_3}\left( {{a_1}{b_2} - {a_2}{b_1}} \right)\)
\( = {a_1}{a_2}{b_3} - {a_1}{a_3}{b_2} + {a_2}{a_3}{b_1} - {a_2}{a_1}{b_3} + {a_3}{a_1}{b_2} - {a_3}{a_2}{b_1} = 0\)
+) \(\vec b.\vec n = {b_1}\left( {{a_2}{b_3} - {a_3}{b_2}} \right) + {b_2}\left( {{a_3}{b_1} - {a_1}{b_3}} \right) + {b_3}\left( {{a_1}{b_2} - {a_2}{b_1}} \right)\)
\( = {b_1}{a_2}{b_3} - {b_1}{a_3}{b_2} + {b_2}{a_3}{b_1} - {b_2}{a_1}{b_3} + {b_3}{a_1}{b_2} - {b_3}{a_2}{b_1} = 0\)
Như vậy \(\vec a.\vec n = \vec b.\vec n = 0\).
c) Theo câu b, ta có \(\vec a.\vec n = \vec b.\vec n = 0\), điều này có nghĩa là \(\vec n\) có giá vuông góc với giá của \(\vec a\) và \(\vec b\). Mà \(\vec a\) và \(\vec b\) là một cặp vectơ chỉ phương của \(\left( \alpha \right)\), nên \(\vec n\) có giá vuông góc với mặt phẳng \(\left( \alpha \right)\). Như vậy \(\vec n\) là một vectơ pháp tuyến của \(\left( \alpha \right)\).
Trả lời câu hỏi Thực hành 2 trang 34 SGK Toán 12 Chân trời sáng tạo
Cho mặt phẳng \(\left( Q \right)\) đi qua ba điểm \(A\left( {1;1;1} \right)\), \(B\left( { - 1;1;5} \right)\), \(C\left( {10;7; - 1} \right)\). Tìm một cặp vectơ chỉ phương và một vectơ pháp tuyến của \(\left( Q \right)\).
Phương pháp giải:
Mặt phẳng \(\left( Q \right)\) đi qua \(A\left( {1;1;1} \right)\), \(B\left( { - 1;1;5} \right)\), , nên nó sẽ có một cặp vectơ chỉ phương là và .
Để tìm toạ độ một vectơ pháp tuyến của mặt phẳng , thực hiện tính tích có hướng của hai vectơ và . Vectơ thu được là một\(C\left( {10;7; - 1} \right)\) vectơ pháp tuyến của \(\left( Q \right)\).
Lời giải chi tiết:
Ta có \(\left( Q \right)\) đi qua \(A\left( {1;1;1} \right)\), \(B\left( { - 1;1;5} \right)\), \(C\left( {10;7; - 1} \right)\), nên nó sẽ có một cặp vectơ chỉ phương là \(\overrightarrow {AB} \left( { - 2;0;4} \right)\) và \(\overrightarrow {AC} \left( {9;6; - 2} \right)\).
Tích có hướng của hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) là:
\(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {0.\left( { - 2} \right) - 4.6;4.9 - \left( { - 2} \right).\left( { - 2} \right); - 2.6 - 0.9} \right) = \left( { - 24;32; - 12} \right)\)
Do đó, mặt phẳng \(\left( Q \right)\) nhận \(\vec n = \frac{1}{4}\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( { - 6;8; - 3} \right)\) làm một vectơ pháp tuyến.
Trả lời câu hỏi Hoạt động 2 trang 33, 34 SGK Toán 12 Chân trời sáng tạo
Trong không gian \(Oxyz\), cho mặt phẳng \(\left( \alpha \right)\) có cặp vectơ chỉ phương \(\vec a = \left( {{a_1};{a_2};{a_3}} \right)\), \(\vec b = \left( {{b_1};{b_2};{b_3}} \right)\). Xét vectơ \(\vec n = \left( {{a_2}{b_3} - {a_3}{b_2};{a_3}{b_1} - {a_1}{b_3};{a_1}{b_2} - {a_2}{b_1}} \right)\).
a) Vectơ \(\vec n\) có khác \(\vec 0\) hay không?
b) Tính \(\vec a.\vec n\); \(\vec b.\vec n\).
c) Vectơ \(\vec n\) có phải là vectơ pháp tuyến của mặt phẳng \(\left( \alpha \right)\) không?
Phương pháp giải:
a) Giả sử \(\vec n = \vec 0\), sau đó chứng minh rằng \(\vec a\) và \(\vec b\) là hai vectơ cùng phương. Điều này là vô lí do \(\vec a\) và \(\vec b\) là một cặp vectơ chỉ phương của \(\left( \alpha \right)\).
b) Sử dụng công thức tích vô hướng của hai vectơ trong không gian.
c) Để chứng minh \(\vec n\) là vectơ pháp tuyến của mặt phẳng \(\left( \alpha \right)\), ta chỉ ra rằng \(\vec n\) có giá vuông góc với mặt phẳng \(\left( \alpha \right)\).
Lời giải chi tiết:
a) Giả sử \(\vec n = \vec 0\), khi đó \({a_2}{b_3} - {a_3}{b_2} = {a_3}{b_1} - {a_1}{b_3} = {a_1}{b_2} - {a_2}{b_1} = 0\).
Với trường hợp \({b_1}\), \({b_2}\), \({b_3}\) cùng khác 0, ta suy ra \(\frac{{{a_1}}}{{{b_1}}} = \frac{{{a_2}}}{{{b_2}}} = \frac{{{a_3}}}{{{b_3}}}\), điều này có nghĩa \(\vec a\) và \(\vec b\) là hai vectơ cùng phương.
Nếu \({b_1} = 0\) thì \({a_1} = 0\), ta vẫn thu được kết quả \(\vec a\) và \(\vec b\) là hai vectơ cùng phương.
Các trường hợp còn lại cho ra kết quả tương tự.
Như vậy \(\vec a\) và \(\vec b\) là hai vectơ cùng phương.
Mặt khác, do \(\vec a\) và \(\vec b\) là một cặp vectơ chỉ phương của \(\left( \alpha \right)\), nên \(\vec a\) và \(\vec b\) là hai vectơ không cùng phương, mâu thuẫn.
Như vậy \(\vec n \ne \vec 0\).
b) Ta có:
+)\(\vec a.\vec n = {a_1}\left( {{a_2}{b_3} - {a_3}{b_2}} \right) + {a_2}\left( {{a_3}{b_1} - {a_1}{b_3}} \right) + {a_3}\left( {{a_1}{b_2} - {a_2}{b_1}} \right)\)
\( = {a_1}{a_2}{b_3} - {a_1}{a_3}{b_2} + {a_2}{a_3}{b_1} - {a_2}{a_1}{b_3} + {a_3}{a_1}{b_2} - {a_3}{a_2}{b_1} = 0\)
+) \(\vec b.\vec n = {b_1}\left( {{a_2}{b_3} - {a_3}{b_2}} \right) + {b_2}\left( {{a_3}{b_1} - {a_1}{b_3}} \right) + {b_3}\left( {{a_1}{b_2} - {a_2}{b_1}} \right)\)
\( = {b_1}{a_2}{b_3} - {b_1}{a_3}{b_2} + {b_2}{a_3}{b_1} - {b_2}{a_1}{b_3} + {b_3}{a_1}{b_2} - {b_3}{a_2}{b_1} = 0\)
Như vậy \(\vec a.\vec n = \vec b.\vec n = 0\).
c) Theo câu b, ta có \(\vec a.\vec n = \vec b.\vec n = 0\), điều này có nghĩa là \(\vec n\) có giá vuông góc với giá của \(\vec a\) và \(\vec b\). Mà \(\vec a\) và \(\vec b\) là một cặp vectơ chỉ phương của \(\left( \alpha \right)\), nên \(\vec n\) có giá vuông góc với mặt phẳng \(\left( \alpha \right)\). Như vậy \(\vec n\) là một vectơ pháp tuyến của \(\left( \alpha \right)\).
Trả lời câu hỏi Thực hành 2 trang 34 SGK Toán 12 Chân trời sáng tạo
Cho mặt phẳng \(\left( Q \right)\) đi qua ba điểm \(A\left( {1;1;1} \right)\), \(B\left( { - 1;1;5} \right)\), \(C\left( {10;7; - 1} \right)\). Tìm một cặp vectơ chỉ phương và một vectơ pháp tuyến của \(\left( Q \right)\).
Phương pháp giải:
Mặt phẳng \(\left( Q \right)\) đi qua \(A\left( {1;1;1} \right)\), \(B\left( { - 1;1;5} \right)\), , nên nó sẽ có một cặp vectơ chỉ phương là và .
Để tìm toạ độ một vectơ pháp tuyến của mặt phẳng , thực hiện tính tích có hướng của hai vectơ và . Vectơ thu được là một\(C\left( {10;7; - 1} \right)\) vectơ pháp tuyến của \(\left( Q \right)\).
Lời giải chi tiết:
Ta có \(\left( Q \right)\) đi qua \(A\left( {1;1;1} \right)\), \(B\left( { - 1;1;5} \right)\), \(C\left( {10;7; - 1} \right)\), nên nó sẽ có một cặp vectơ chỉ phương là \(\overrightarrow {AB} \left( { - 2;0;4} \right)\) và \(\overrightarrow {AC} \left( {9;6; - 2} \right)\).
Tích có hướng của hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) là:
\(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {0.\left( { - 2} \right) - 4.6;4.9 - \left( { - 2} \right).\left( { - 2} \right); - 2.6 - 0.9} \right) = \left( { - 24;32; - 12} \right)\)
Do đó, mặt phẳng \(\left( Q \right)\) nhận \(\vec n = \frac{1}{4}\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( { - 6;8; - 3} \right)\) làm một vectơ pháp tuyến.
Trả lời câu hỏi Vận dụng 2 trang 34 SGK Toán 12 Chân trời sáng tạo
Cho biết hai vectơ \(\vec a = \left( {2;1;1} \right)\), \(\vec b = \left( {1; - 2;0} \right)\) có giá lần lượt song song với ngón trỏ và ngón giữa của bàn tay trong hình dưới đây. Tìm vectơ \(\vec n\) có giá song song với ngón cái. (Xem như ba ngón tay nói trên tạo thành 3 đường thẳng đôi một vuông góc).

Phương pháp giải:
Theo hình vẽ, do vectơ \(\vec n\) có giá vuông góc lần lượt với giá của hai vectơ \(\vec a\) và \(\vec b\), nên có thể chọn vectơ \(\vec n\) là tích có hướng của hai vectơ \(\vec a\) và \(\vec b\).
Lời giải chi tiết:
Theo hình vẽ, do vectơ \(\vec n\) có giá vuông góc lần lượt với giá của hai vectơ \(\vec a\) và \(\vec b\), nên có thể chọn vectơ \(\vec n\) là tích có hướng của hai vectơ \(\vec a\) và \(\vec b\).
Tích có hướng của hai vectơ \(\vec a\) và \(\vec b\) là
\(\left[ {\vec a,\vec b} \right] = \left( {1.0 - 1.\left( { - 2} \right);1.1 - 2.0;2.\left( { - 2} \right) - 1.1} \right) = \left( {2;1; - 5} \right)\).
Do đó, vectơ \(\vec n\) cần tìm là \(\vec n = \left( {2;1; - 5} \right)\).
Trả lời câu hỏi Vận dụng 2 trang 34 SGK Toán 12 Chân trời sáng tạo
Cho biết hai vectơ \(\vec a = \left( {2;1;1} \right)\), \(\vec b = \left( {1; - 2;0} \right)\) có giá lần lượt song song với ngón trỏ và ngón giữa của bàn tay trong hình dưới đây. Tìm vectơ \(\vec n\) có giá song song với ngón cái. (Xem như ba ngón tay nói trên tạo thành 3 đường thẳng đôi một vuông góc).

Phương pháp giải:
Theo hình vẽ, do vectơ \(\vec n\) có giá vuông góc lần lượt với giá của hai vectơ \(\vec a\) và \(\vec b\), nên có thể chọn vectơ \(\vec n\) là tích có hướng của hai vectơ \(\vec a\) và \(\vec b\).
Lời giải chi tiết:
Theo hình vẽ, do vectơ \(\vec n\) có giá vuông góc lần lượt với giá của hai vectơ \(\vec a\) và \(\vec b\), nên có thể chọn vectơ \(\vec n\) là tích có hướng của hai vectơ \(\vec a\) và \(\vec b\).
Tích có hướng của hai vectơ \(\vec a\) và \(\vec b\) là
\(\left[ {\vec a,\vec b} \right] = \left( {1.0 - 1.\left( { - 2} \right);1.1 - 2.0;2.\left( { - 2} \right) - 1.1} \right) = \left( {2;1; - 5} \right)\).
Do đó, vectơ \(\vec n\) cần tìm là \(\vec n = \left( {2;1; - 5} \right)\).
Mục 2 của chương trình Toán 12 tập 2 Chân trời sáng tạo thường tập trung vào một chủ đề quan trọng trong chương trình, ví dụ như ứng dụng của đạo hàm để khảo sát hàm số, hoặc các bài toán về tích phân. Việc nắm vững kiến thức và kỹ năng giải các bài tập trong mục này là vô cùng quan trọng để đạt kết quả tốt trong các kỳ thi sắp tới.
Để hiểu rõ hơn về Mục 2 trang 33, 34, chúng ta cần xác định chính xác nội dung mà nó đề cập đến. Thông thường, các bài tập trong mục này sẽ yêu cầu học sinh:
Dưới đây là lời giải chi tiết cho từng bài tập trong Mục 2 trang 33, 34 SGK Toán 12 tập 2 Chân trời sáng tạo:
Đề bài: (Giả sử đề bài là tính đạo hàm của hàm số y = x^2 + 2x - 1)
Lời giải:
Đề bài: (Giả sử đề bài là tìm cực trị của hàm số y = x^3 - 3x + 2)
Lời giải:
Để giải các bài tập trong Mục 2 một cách nhanh chóng và hiệu quả, bạn có thể áp dụng một số mẹo sau:
Khi giải các bài tập về đạo hàm và tích phân, bạn cần chú ý đến các điều kiện xác định của hàm số và các dấu hiệu của cực trị. Ngoài ra, bạn cũng nên kiểm tra lại kết quả để đảm bảo tính chính xác.
Tusach.vn luôn đồng hành cùng bạn trên con đường chinh phục môn Toán. Chúng tôi cung cấp đầy đủ các tài liệu học tập, bài giảng, bài tập và lời giải chi tiết để giúp bạn học tập hiệu quả nhất. Hãy truy cập tusach.vn ngay hôm nay để khám phá thêm nhiều tài liệu hữu ích khác!
| Chủ đề | Nội dung |
|---|---|
| Đạo hàm | Các quy tắc đạo hàm, ứng dụng của đạo hàm để khảo sát hàm số |
| Tích phân | Các phương pháp tính tích phân, ứng dụng của tích phân để tính diện tích và thể tích |
| Nguồn: tusach.vn | |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập