Bài tập 5 trang 66 SGK Toán 12 tập 2 thuộc chương trình Toán 12 Chân trời sáng tạo, tập trung vào việc rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Tusach.vn xin giới thiệu lời giải chi tiết, dễ hiểu, giúp các em học sinh hiểu rõ bản chất bài toán và tự tin làm bài.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác và cập nhật nhất để hỗ trợ tối đa cho quá trình học tập của các bạn.
Cho ba mặt phẳng \(\left( \alpha \right):x + y + 2z + 1 = 0\), \(\left( \beta \right):x + y - z + 2 = 0\) và \(\left( \gamma \right):x - y + 5 = 0\). Trong các mệnh đề sau, mệnh đề nào sai? A. \(\left( \alpha \right) \bot \left( \beta \right)\) B. \(\left( \gamma \right) \bot \left( \beta \right)\) C. \(\left( \alpha \right)\parallel \left( \beta \right)\) D. \(\left( \alpha \right) \bot \left( \gamma \right)\)
Đề bài
Cho ba mặt phẳng \(\left( \alpha \right):x + y + 2z + 1 = 0\), \(\left( \beta \right):x + y - z + 2 = 0\) và \(\left( \gamma \right):x - y + 5 = 0\). Trong các mệnh đề sau, mệnh đề nào sai?
A. \(\left( \alpha \right) \bot \left( \beta \right)\)
B. \(\left( \gamma \right) \bot \left( \beta \right)\)
C. \(\left( \alpha \right)\parallel \left( \beta \right)\)
D. \(\left( \alpha \right) \bot \left( \gamma \right)\)
Phương pháp giải - Xem chi tiết
Xác định các vectơ pháp tuyến của các mặt phẳng \(\left( \alpha \right)\), \(\left( \beta \right)\), \(\left( \gamma \right)\). Nếu hai vectơ pháp tuyến cùng phương, thì hai mặt phẳng song song với nhau; nếu hai vectơ pháp tuyến có giá vuông góc với nhau thì hai mặt phẳng vuông góc với nhau.
Lời giải chi tiết
Các vectơ pháp tuyến của các mặt phẳng \(\left( \alpha \right)\), \(\left( \beta \right)\), \(\left( \gamma \right)\) lần lượt là \(\overrightarrow {{n_1}} = \left( {1;1;2} \right)\), \(\overrightarrow {{n_2}} = \left( {1;1; - 1} \right)\), \(\overrightarrow {{n_3}} = \left( {1; - 1;0} \right)\).
Ta có \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 1.1 + 1.1 + 2.\left( { - 1} \right) = 0\), suy ra \(\left( \alpha \right) \bot \left( \beta \right)\).
Ta có \(\overrightarrow {{n_2}} .\overrightarrow {{n_3}} = 1.1 + 1.\left( { - 1} \right) + \left( { - 1} \right).0 = 0\), suy ra \(\left( \gamma \right) \bot \left( \beta \right)\).
Ta có \(\frac{1}{1} \ne \frac{2}{{ - 1}}\), suy ra \(\left( \alpha \right)\) và \(\left( \beta \right)\) không song song với nhau.
Ta có \(\overrightarrow {{n_1}} .\overrightarrow {{n_3}} = 1.1 + 1.\left( { - 1} \right) + 2.0 = 0\), suy ra \(\left( \alpha \right) \bot \left( \gamma \right)\).
Vậy đáp án cần chọn là C.
Bài tập 5 trang 66 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Dưới đây là hướng dẫn giải chi tiết bài tập này, giúp các em hiểu rõ từng bước và tự tin làm bài.
Bài tập yêu cầu khảo sát hàm số y = x3 - 3x2 + 2. Cụ thể, học sinh cần thực hiện các bước sau:
Bước 1: Xác định tập xác định
Hàm số y = x3 - 3x2 + 2 là một hàm đa thức, do đó tập xác định của hàm số là D = ℝ.
Bước 2: Tính đạo hàm bậc nhất và tìm các điểm cực trị
Đạo hàm bậc nhất của hàm số là: y' = 3x2 - 6x.
Để tìm các điểm cực trị, ta giải phương trình y' = 0:
3x2 - 6x = 0 ⇔ 3x(x - 2) = 0 ⇔ x = 0 hoặc x = 2.
Ta có bảng biến thiên:
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| y' | + | - | + | |
| y | ↗ | ↘ | ↗ |
Từ bảng biến thiên, ta thấy hàm số đạt cực đại tại x = 0, yCĐ = 2 và đạt cực tiểu tại x = 2, yCT = -2.
Bước 3: Lập bảng biến thiên
Dựa vào kết quả trên, ta có bảng biến thiên của hàm số:
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| y' | + | - | + | |
| y | -∞ | 2 | -2 | +∞ |
Bước 4: Vẽ đồ thị hàm số
Dựa vào bảng biến thiên, ta có thể vẽ được đồ thị hàm số y = x3 - 3x2 + 2.
Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ hiểu rõ hơn về cách giải bài tập 5 trang 66 SGK Toán 12 tập 2 - Chân trời sáng tạo và đạt kết quả tốt trong học tập. Tusach.vn luôn đồng hành cùng các bạn trên con đường chinh phục kiến thức!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập