Tusach.vn xin giới thiệu lời giải chi tiết bài tập 2 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo. Bài tập này thuộc chương trình học Toán 12, tập trung vào các kiến thức về đạo hàm và ứng dụng của đạo hàm.
Chúng tôi cung cấp lời giải dễ hiểu, kèm theo các bước giải chi tiết và giải thích rõ ràng, giúp học sinh hiểu sâu sắc kiến thức và tự tin giải các bài tập tương tự.
Tính diện tích hình phẳng giới hạn bởi đồ thị của hàm số (y = {x^3} - x), trục hoành và hai đường thẳng (x = 0), (x = 2).
Đề bài
Tính diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = {x^3} - x\), trục hoành và hai đường thẳng \(x = 0\), \(x = 2\).
Phương pháp giải - Xem chi tiết
Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a\), \(x = b\) là \(S = \int\limits_a^b {\left| {f\left( x \right)} \right|dx} \).
Lời giải chi tiết
Diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = {x^3} - x\), trục hoành và hai đường thẳng \(x = 0\), \(x = 2\) là: \(S = \int\limits_{ - 1}^1 {\left| {{x^3} - x} \right|dx} \).
Ta có \({x^3} - x = 0 \Leftrightarrow x = 0\) hoặc \(x = \pm 1\).
Do đó:
\(S = \int\limits_0^2 {\left| {{x^3} - x} \right|dx} {\rm{\;}} = \int\limits_0^1 {\left| {{x^3} - x} \right|dx} {\rm{\;}} + \int\limits_1^2 {\left| {{x^3} - x} \right|dx} {\rm{\;}} = \int\limits_0^1 {\left( {x - {x^3}} \right)dx} + \int\limits_1^2 {\left( {{x^3} - x} \right)dx} \)
\( = \left( {\frac{{{x^2}}}{2} - \frac{{{x^4}}}{4}} \right)\left| {\begin{array}{*{20}{c}}{^1}\\{_0}\end{array}} \right. + \left( {\frac{{{x^4}}}{4} - \frac{{{x^2}}}{2}} \right)\left| {\begin{array}{*{20}{c}}{^2}\\{_1}\end{array}} \right. = \frac{1}{4} + \frac{9}{4} = \frac{5}{2}\).
Bài tập 2 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Dưới đây là hướng dẫn chi tiết và dễ hiểu để giúp bạn giải bài tập này một cách hiệu quả.
(Giả sử đề bài là: Cho hàm số y = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.)
Hàm số y = x3 - 3x2 + 2 có tập xác định là D = ℝ (tập hợp tất cả các số thực).
y' = 3x2 - 6x
3x2 - 6x = 0 ⇔ 3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2.
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| y' | + | - | + | |
| y | ↗ | ↘ | ↗ |
Dựa vào bảng biến thiên, ta thấy:
Khi giải các bài toán về cực trị của hàm số, bạn cần thực hiện đầy đủ các bước sau:
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập về cực trị của hàm số, bạn có thể tham khảo các bài tập tương tự trong SGK Toán 12 tập 2 - Chân trời sáng tạo và các tài liệu tham khảo khác.
Tusach.vn luôn cập nhật lời giải chi tiết và chính xác cho tất cả các bài tập trong SGK Toán 12 tập 2 - Chân trời sáng tạo. Hãy truy cập website của chúng tôi để được hỗ trợ tốt nhất!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập