Chào mừng các em học sinh đến với lời giải chi tiết bài tập 1 trang 24 SGK Toán 12 tập 1 Chân trời sáng tạo. Bài viết này sẽ giúp các em hiểu rõ phương pháp giải và tự tin hơn trong quá trình học tập môn Toán.
tusach.vn luôn đồng hành cùng các em, cung cấp những tài liệu học tập chất lượng và hữu ích nhất.
Tìm các tiệm cận đứng và tiệm cận ngang của đồ thị hàm số sau: a) (y = frac{{4x - 5}}{{2x - 3}}) b) (y = frac{{ - 2x + 7}}{{4x - 3}}) c) (y = frac{{5x}}{{3x - 7}})
Đề bài
Tìm các tiệm cận đứng và tiệm cận ngang của đồ thị hàm số sau:
a) \(y = \frac{{4x - 5}}{{2x - 3}}\)
b) \(y = \frac{{ - 2x + 7}}{{4x - 3}}\)
c) \(y = \frac{{5x}}{{3x - 7}}\)
Phương pháp giải - Xem chi tiết
- Đường thẳng x = a được gọi là một đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau thoả mãn: \(\mathop {\lim f(x) = }\limits_{x \to {a^ - }} + \infty ,\mathop {\lim f(x) = }\limits_{x \to {a^ + }} + \infty ,\mathop {\lim f(x) = }\limits_{x \to {a^ - }} - \infty ,\mathop {\lim f(x) = }\limits_{x \to {a^ + }} - \infty \)
- Đường thẳng y = m được gọi là một đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu \(\mathop {\lim }\limits_{x \to - \infty } f(x) = m\) hoặc \(\mathop {\lim }\limits_{x \to + \infty } f(x) = m\)
Lời giải chi tiết
a) Xét \(y = \frac{{4x - 5}}{{2x - 3}}\)
Tập xác định: \(D = \mathbb{R}\backslash \left\{ {\frac{3}{2}} \right\}\)
Ta có: \(\mathop {\lim }\limits_{x \to {{\frac{3}{2}}^ + }} y = \mathop {\lim }\limits_{x \to {{\frac{3}{2}}^ + }} \frac{{4x - 5}}{{2x - 3}} = + \infty \); \(\mathop {\lim }\limits_{x \to {{\frac{3}{2}}^ - }} y = \mathop {\lim }\limits_{x \to {{\frac{3}{2}}^ - }} \frac{{4x - 5}}{{2x - 3}} = - \infty \)
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{4x - 5}}{{2x - 3}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{4 - \frac{5}{x}}}{{2 - \frac{3}{x}}} = 2\); \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{4x - 5}}{{2x - 3}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{4 - \frac{5}{x}}}{{2 - \frac{3}{x}}} = 2\)
Vậy đường thẳng x = \(\frac{3}{2}\) và y = 2 lần lượt là tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
b) Xét \(y = \frac{{ - 2x + 7}}{{4x - 3}}\)
Tập xác định: \(D = \mathbb{R}\backslash \left\{ {\frac{3}{4}} \right\}\)
Ta có: \(\mathop {\lim }\limits_{x \to {{\frac{3}{4}}^ + }} y = \mathop {\lim }\limits_{x \to {{\frac{3}{4}}^ + }} \frac{{ - 2x + 7}}{{4x - 3}} = + \infty \); \(\mathop {\lim }\limits_{x \to {{\frac{3}{4}}^ - }} y = \mathop {\lim }\limits_{x \to {{\frac{3}{4}}^ - }} \frac{{ - 2x + 7}}{{4x - 3}} = - \infty \)
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 2x + 7}}{{4x - 3}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 2 + \frac{7}{x}}}{{4 - \frac{3}{x}}} = - \frac{1}{2}\); \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - 2x + 7}}{{4x - 3}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - 2 + \frac{7}{x}}}{{4 - \frac{3}{x}}} = - \frac{1}{2}\)
Vậy đường thẳng x = \(\frac{3}{4}\) và y = \( - \frac{1}{2}\) lần lượt là tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
c) Xét \(y = \frac{{5x}}{{3x - 7}}\)
Tập xác định: \(D = \mathbb{R}\backslash \left\{ {\frac{7}{3}} \right\}\)
Ta có: \(\mathop {\lim }\limits_{x \to {{\frac{7}{3}}^ + }} y = \mathop {\lim }\limits_{x \to {{\frac{7}{3}}^ + }} \frac{{5x}}{{3x - 7}} = + \infty \); \(\mathop {\lim }\limits_{x \to {{\frac{7}{3}}^ - }} y = \mathop {\lim }\limits_{x \to {{\frac{7}{3}}^ - }} \frac{{5x}}{{3x - 7}} = - \infty \)
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{5x}}{{3x - 7}} = \mathop {\lim }\limits_{x \to + \infty } \frac{5}{{3 - \frac{7}{x}}} = \frac{5}{3}\); \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{5x}}{{3x - 7}} = \mathop {\lim }\limits_{x \to - \infty } \frac{5}{{3 - \frac{7}{x}}} = \frac{5}{3}\)
Vậy đường thẳng x = \(\frac{7}{3}\) và y = \(\frac{5}{3}\) lần lượt là tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
Bài tập 1 trang 24 SGK Toán 12 tập 1 Chân trời sáng tạo thuộc chương trình học về giới hạn của hàm số. Đây là một phần kiến thức quan trọng, nền tảng cho các chương trình học nâng cao hơn. Bài tập này yêu cầu học sinh vận dụng kiến thức về định nghĩa giới hạn để tính toán và chứng minh các giới hạn đơn giản.
Bài tập 1 thường bao gồm các câu hỏi yêu cầu tính giới hạn của hàm số khi x tiến tới một giá trị cụ thể. Các hàm số có thể là đa thức, phân thức, hoặc các hàm số khác. Để giải bài tập này, học sinh cần nắm vững các quy tắc tính giới hạn, đặc biệt là quy tắc cộng, trừ, nhân, chia giới hạn và giới hạn của các hàm số cơ bản.
Ví dụ: Tính limx→2 (x2 + 3x - 1)
Giải:
Ngoài SGK Toán 12 tập 1 Chân trời sáng tạo, các em có thể tham khảo thêm các tài liệu sau:
Bài tập 1 trang 24 SGK Toán 12 tập 1 Chân trời sáng tạo là một bài tập cơ bản nhưng quan trọng để nắm vững kiến thức về giới hạn. Hy vọng với hướng dẫn chi tiết này, các em sẽ tự tin hơn trong quá trình học tập và giải bài tập. Chúc các em học tốt!
| Bài Tập | Lời Giải |
|---|---|
| Bài tập 1a | (Giải thích chi tiết bài tập 1a) |
| Bài tập 1b | (Giải thích chi tiết bài tập 1b) |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập