1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài tập 4 trang 20 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 4 trang 20 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 4 trang 20 SGK Toán 12 tập 2 - Chân trời sáng tạo

Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách giáo khoa Toán 12 tập 2 - Chân trời sáng tạo. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài tập 4 trang 20, từ đó củng cố kiến thức và tự tin hơn trong quá trình học tập.

Chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu nhất, kèm theo các lưu ý quan trọng để bạn có thể áp dụng vào các bài tập tương tự.

Tính các tích phân sau: a) \(\int\limits_{ - 2}^1 {\left| {2x + 2} \right|dx} \) b) \(\int\limits_0^4 {\left| {{x^2} - 4} \right|dx} \) c) \(\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left| {\sin x} \right|dx} \)

Đề bài

Tính các tích phân sau:

a) \(\int\limits_{ - 2}^1 {\left| {2x + 2} \right|dx} \)

b) \(\int\limits_0^4 {\left| {{x^2} - 4} \right|dx} \)

c) \(\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left| {\sin x} \right|dx} \)

Phương pháp giải - Xem chi tiếtGiải bài tập 4 trang 20 SGK Toán 12 tập 2 - Chân trời sáng tạo 1

Sử dụng tính chất của tích phân \(\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^c {f\left( x \right)dx} + \int\limits_c^b {f\left( x \right)dx} \) để phá dấu giá trị tuyệt đối và đưa về tính các tích phân đơn giản.

Lời giải chi tiết

a) \(\int\limits_{ - 2}^1 {\left| {2x + 2} \right|dx} = \int\limits_{ - 2}^{ - 1} {\left| {2x + 2} \right|dx} + \int\limits_{ - 1}^1 {\left| {2x + 2} \right|dx} = \int\limits_{ - 2}^{ - 1} { - \left( {2x + 2} \right)dx} + \int\limits_{ - 1}^1 {\left( {2x + 2} \right)dx} \)

\( = - \left. {\left( {{x^2} + 2x} \right)} \right|_{ - 2}^{ - 1} + \left. {\left( {{x^2} + 2x} \right)} \right|_{ - 1}^1 = - \left[ {\left( { - 1} \right) - 0} \right] + \left[ {3 - \left( { - 1} \right)} \right] = 5\)

b) \(\int\limits_0^4 {\left| {{x^2} - 4} \right|dx} = \int\limits_0^2 {\left| {{x^2} - 4} \right|dx} + \int\limits_2^4 {\left| {{x^2} - 4} \right|dx} = \int\limits_0^2 {\left( {4 - {x^2}} \right)dx} + \int\limits_2^4 {\left( {{x^2} - 4} \right)dx} \)

\( = \left. {\left( {4x - \frac{{x{\rm{\^3}}}}{3}} \right)} \right|_0^2 + \left. {\left( {\frac{{x{\rm{\^3}}}}{3} - 4x} \right)} \right|_2^4 = \left( {\frac{{16}}{3} - 0} \right) + \left[ {\frac{{16}}{3} - \left( { - \frac{{16}}{3}} \right)} \right] = 16\)

c) \(\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left| {\sin x} \right|dx} = \int\limits_{ - \frac{\pi }{2}}^0 {\left| {\sin x} \right|dx} + \int\limits_0^{\frac{\pi }{2}} {\left| {\sin x} \right|dx} = \int\limits_{ - \frac{\pi }{2}}^0 {\left( { - \sin x} \right)dx} + \int\limits_0^{\frac{\pi }{2}} {\sin xdx} \)

\( = - \left. {\left( { - \cos x} \right)} \right|_{ - \frac{\pi }{2}}^0 + \left. {\left( { - \cos x} \right)} \right|_0^{\frac{\pi }{2}} = - \left[ { - 1 - 0} \right] + \left[ {0 - \left( { - 1} \right)} \right] = 2\)

Giải bài tập 4 trang 20 SGK Toán 12 tập 2 - Chân trời sáng tạo: Hướng dẫn chi tiết

Bài tập 4 trang 20 SGK Toán 12 tập 2 - Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và các ứng dụng của đạo hàm để giải quyết các bài toán cụ thể.

Nội dung bài tập 4 trang 20

Thông thường, bài tập 4 trang 20 sẽ bao gồm các dạng bài sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của một hàm số cho trước, có thể là hàm số đơn giản hoặc hàm số phức tạp.
  • Tìm đạo hàm cấp hai: Yêu cầu tìm đạo hàm cấp hai của một hàm số.
  • Ứng dụng đạo hàm để giải quyết các bài toán thực tế: Ví dụ như tìm vận tốc, gia tốc, hoặc xác định khoảng đồng biến, nghịch biến của hàm số.

Lời giải chi tiết bài tập 4 trang 20

Để giải bài tập 4 trang 20 một cách hiệu quả, bạn cần:

  1. Nắm vững các công thức đạo hàm cơ bản: Đạo hàm của các hàm số đơn giản như xn, sinx, cosx, ex, ln(x),...
  2. Hiểu rõ các quy tắc tính đạo hàm: Quy tắc cộng, trừ, nhân, chia, quy tắc hàm hợp,...
  3. Phân tích đề bài một cách cẩn thận: Xác định rõ yêu cầu của bài toán và các thông tin đã cho.
  4. Thực hiện các phép tính đạo hàm một cách chính xác: Tránh các lỗi sai do tính toán nhầm lẫn.

Ví dụ minh họa:

Giả sử bài tập 4 yêu cầu tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.

Lời giải:

f'(x) = 3x2 + 4x - 5

Các lưu ý quan trọng

  • Luôn kiểm tra lại kết quả sau khi tính đạo hàm.
  • Sử dụng máy tính cầm tay để kiểm tra lại các phép tính phức tạp.
  • Tham khảo các tài liệu tham khảo và các bài giải trên mạng để hiểu rõ hơn về các dạng bài tập.

Tusach.vn – Đồng hành cùng bạn học Toán 12

Tusach.vn tự hào là một trong những website hàng đầu cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách giáo khoa Toán 12 tập 2 - Chân trời sáng tạo. Chúng tôi luôn cập nhật các bài giải mới nhất và cung cấp các tài liệu học tập hữu ích để giúp bạn học tập tốt hơn.

Nếu bạn gặp khó khăn trong quá trình giải bài tập, đừng ngần ngại liên hệ với chúng tôi để được hỗ trợ. Chúc bạn học tập tốt!

Công thứcĐạo hàm
f(x) = xnf'(x) = nxn-1
f(x) = sinxf'(x) = cosx
f(x) = cosxf'(x) = -sinx

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN