Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách giáo khoa Toán 12 tập 2 - Chân trời sáng tạo. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài tập 4 trang 20, từ đó củng cố kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu nhất, kèm theo các lưu ý quan trọng để bạn có thể áp dụng vào các bài tập tương tự.
Tính các tích phân sau: a) \(\int\limits_{ - 2}^1 {\left| {2x + 2} \right|dx} \) b) \(\int\limits_0^4 {\left| {{x^2} - 4} \right|dx} \) c) \(\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left| {\sin x} \right|dx} \)
Đề bài
Tính các tích phân sau:
a) \(\int\limits_{ - 2}^1 {\left| {2x + 2} \right|dx} \)
b) \(\int\limits_0^4 {\left| {{x^2} - 4} \right|dx} \)
c) \(\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left| {\sin x} \right|dx} \)
Phương pháp giải - Xem chi tiết
Sử dụng tính chất của tích phân \(\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^c {f\left( x \right)dx} + \int\limits_c^b {f\left( x \right)dx} \) để phá dấu giá trị tuyệt đối và đưa về tính các tích phân đơn giản.
Lời giải chi tiết
a) \(\int\limits_{ - 2}^1 {\left| {2x + 2} \right|dx} = \int\limits_{ - 2}^{ - 1} {\left| {2x + 2} \right|dx} + \int\limits_{ - 1}^1 {\left| {2x + 2} \right|dx} = \int\limits_{ - 2}^{ - 1} { - \left( {2x + 2} \right)dx} + \int\limits_{ - 1}^1 {\left( {2x + 2} \right)dx} \)
\( = - \left. {\left( {{x^2} + 2x} \right)} \right|_{ - 2}^{ - 1} + \left. {\left( {{x^2} + 2x} \right)} \right|_{ - 1}^1 = - \left[ {\left( { - 1} \right) - 0} \right] + \left[ {3 - \left( { - 1} \right)} \right] = 5\)
b) \(\int\limits_0^4 {\left| {{x^2} - 4} \right|dx} = \int\limits_0^2 {\left| {{x^2} - 4} \right|dx} + \int\limits_2^4 {\left| {{x^2} - 4} \right|dx} = \int\limits_0^2 {\left( {4 - {x^2}} \right)dx} + \int\limits_2^4 {\left( {{x^2} - 4} \right)dx} \)
\( = \left. {\left( {4x - \frac{{x{\rm{\^3}}}}{3}} \right)} \right|_0^2 + \left. {\left( {\frac{{x{\rm{\^3}}}}{3} - 4x} \right)} \right|_2^4 = \left( {\frac{{16}}{3} - 0} \right) + \left[ {\frac{{16}}{3} - \left( { - \frac{{16}}{3}} \right)} \right] = 16\)
c) \(\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left| {\sin x} \right|dx} = \int\limits_{ - \frac{\pi }{2}}^0 {\left| {\sin x} \right|dx} + \int\limits_0^{\frac{\pi }{2}} {\left| {\sin x} \right|dx} = \int\limits_{ - \frac{\pi }{2}}^0 {\left( { - \sin x} \right)dx} + \int\limits_0^{\frac{\pi }{2}} {\sin xdx} \)
\( = - \left. {\left( { - \cos x} \right)} \right|_{ - \frac{\pi }{2}}^0 + \left. {\left( { - \cos x} \right)} \right|_0^{\frac{\pi }{2}} = - \left[ { - 1 - 0} \right] + \left[ {0 - \left( { - 1} \right)} \right] = 2\)
Bài tập 4 trang 20 SGK Toán 12 tập 2 - Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và các ứng dụng của đạo hàm để giải quyết các bài toán cụ thể.
Thông thường, bài tập 4 trang 20 sẽ bao gồm các dạng bài sau:
Để giải bài tập 4 trang 20 một cách hiệu quả, bạn cần:
Ví dụ minh họa:
Giả sử bài tập 4 yêu cầu tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
Lời giải:
f'(x) = 3x2 + 4x - 5
Tusach.vn tự hào là một trong những website hàng đầu cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách giáo khoa Toán 12 tập 2 - Chân trời sáng tạo. Chúng tôi luôn cập nhật các bài giải mới nhất và cung cấp các tài liệu học tập hữu ích để giúp bạn học tập tốt hơn.
Nếu bạn gặp khó khăn trong quá trình giải bài tập, đừng ngần ngại liên hệ với chúng tôi để được hỗ trợ. Chúc bạn học tập tốt!
| Công thức | Đạo hàm |
|---|---|
| f(x) = xn | f'(x) = nxn-1 |
| f(x) = sinx | f'(x) = cosx |
| f(x) = cosx | f'(x) = -sinx |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập