Tusach.vn cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong mục 1 trang 61, 62, 63 SGK Toán 12 tập 2 chương trình Chân trời sáng tạo. Chúng tôi giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.
Với đội ngũ giáo viên giàu kinh nghiệm, các lời giải của chúng tôi không chỉ cung cấp đáp án mà còn giải thích rõ ràng từng bước, giúp bạn hiểu sâu sắc bản chất của bài toán.
Trong không gian (Oxyz), cho mặt cầu (Sleft( {I;R} right)) có tâm (Ileft( {a;b;c} right)) và bán kính (R). Xét một điểm (Mleft( {x;y;z} right)) thay đổi. a) Tính khoảng cách (IM) theo (x), (y), (z) và (a), (b), (c). b) Nêu điều kiện cần và đủ của (x), (y), (z) để điểm (Mleft( {x;y;z} right)) nằm trên mặt cầu (Sleft( {I;R} right)).
Trả lời câu hỏi Thực hành 1 trang 62 SGK Toán 12 Chân trời sáng tạo
Viết phương trình mặt cầu \(\left( S \right)\):
a) Có tâm \(I\left( {3; - 2; - 4} \right)\), bán kính \(R = 10\).
b) Có đường kính \(EF\) với \(E\left( {3; - 1;8} \right)\) và \(F\left( {7; - 3;0} \right)\).
c) Có tâm \(M\left( { - 2;1;3} \right)\) và đi qua điểm \(N\left( {2; - 3; - 4} \right)\).
Phương pháp giải:
a) Mặt cầu \(\left( S \right)\) tâm \(I\left( {a;b;c} \right)\) và bán kính \(R\) có phương trình là
\({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\)
b) Mặt cầu \(\left( S \right)\) có đường kính \(EF\), suy ra \(\left( S \right)\) có tâm \(I\) là trung điểm của \(EF\) và bán kính bằng \(\frac{{EF}}{2}\), từ đó viết phương trình mặt cầu \(\left( S \right)\) theo như câu a.
c) Mặt cầu \(\left( S \right)\) có tâm \(M\) và đi qua \(N\), nên \(MN\) là một bán kính của \(\left( S \right)\), từ đó viết phương trình mặt cầu \(\left( S \right)\) theo như câu a.
Lời giải chi tiết:
a) Mặt cầu \(\left( S \right)\) tâm \(I\left( {3; - 2; - 4} \right)\), bán kính \(R = 10\) có phương trình là
\({\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 4} \right)^2} = 100\).
b) Mặt cầu \(\left( S \right)\) có đường kính \(EF\), suy ra \(\left( S \right)\) có tâm \(I\) là trung điểm của \(EF\) và bán kính bằng \(\frac{{EF}}{2}\).
Ta có \(E\left( {3; - 1;8} \right)\) và \(F\left( {7; - 3;0} \right)\), suy ra \(I\left( {5; - 2;4} \right)\).
Ta có \(EF = \sqrt {{{\left( {3 - 7} \right)}^2} + {{\left( { - 1 + 3} \right)}^2} + {{\left( {8 - 0} \right)}^2}} = 2\sqrt {21} \), suy ra \(R = \frac{{EF}}{2} = \sqrt {21} \).
Vậy phương trình mặt cầu \(\left( S \right)\) là \({\left( {x - 5} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 4} \right)^2} = 21\).
c) Mặt cầu \(\left( S \right)\) có tâm \(M\) và đi qua \(N\), nên \(MN\) là một bán kính của \(\left( S \right)\).
Ta có \(MN = \sqrt {{{\left( { - 2 - 2} \right)}^2} + {{\left( {1 + 3} \right)}^2} + {{\left( {3 + 4} \right)}^2}} = 9\).
Vậy phương trình mặt cầu \(\left( S \right)\) là \({\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 3} \right)^2} = 81\).
Trả lời câu hỏi Hoạt động 2 trang 63 SGK Toán 12 Chân trời sáng tạo
a) Trong không gian \(Oxyz\), cho điểm \(M\left( {x;y;z} \right)\) thay đổi có toạ độ luôn thoả mãn phương trình \({x^2} + {y^2} + {z^2} - 2x - 4y - 6z - 11 = 0\). (*)
i) Biến đổi (*) về dạng \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 25\).
ii) Chứng tỏ \(M\left( {x;y;z} \right)\) luôn thuộc một mặt cầu \(\left( S \right)\). Tìm tâm và bán kính của \(\left( S \right)\)
b) Bằng cách biến đổi phương trình \({x^2} + {y^2} + {z^2} - 2x - 4y - 6z + 15 = 0\) (**) về dạng \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = - 1\), hãy cho biết phương trình (**) có thể là phương trình mặt cầu hay không.
Phương pháp giải:
a) Sử dụng các hằng đẳng thức để đưa phương trình (*) về dạng như đề bài yêu cầu, từ đó suy ra điểm \(M\) luôn thuộc mặt cầu \(\left( S \right)\).
b) Sử dụng hằng đẳng thức để đưa phương trình (**) về dạng như đề bài yêu cầu, rồi kết luận.
Lời giải chi tiết:
a)
i) Ta có
\(\begin{array}{l}{x^2} + {y^2} + {z^2} - 2x - 4y - 6z - 11 = 0\\ \Leftrightarrow \left( {{x^2} - 2x + 1} \right) + \left( {{y^2} - 4y + 4} \right) + \left( {{z^2} - 6z + 9} \right) - 25 = 0\\ \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 25\end{array}.\)
ii) Do điểm \(M\left( {x;y;z} \right)\) có toạ độ thoả mãn phương trình (*), suy ra điểm \(M\) thoả mãn phương trình \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 25\). Vậy điểm \(M\) thuộc mặt cầu \(\left( S \right)\) có tâm \(I\left( {1;2;3} \right)\) và bán kính \(R = \sqrt {25} = 5\).
b) Ta có
\(\begin{array}{l}{x^2} + {y^2} + {z^2} - 2x - 4y - 6z + 15 = 0\\ \Leftrightarrow \left( {{x^2} - 2x + 1} \right) + \left( {{y^2} - 4y + 4} \right) + \left( {{z^2} - 6z + 9} \right) + 1 = 0\\ \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = - 1\end{array}.\)
Do \( - 1 < 0\), nên phương trình trên không là phương trình mặt cầu. Suy ra (**) không là phương trình mặt cầu.
Trả lời câu hỏi Thực hành 2 trang 63 SGK Toán 12 Chân trời sáng tạo
Trong các phương trình sau, phương trình nào là phương trình mặt cầu? Xác định tâm và bán kính của mặt cầu đó.
a) \({x^2} + {y^2} + {z^2} + 4z - 32 = 0\)
b) \({x^2} + {y^2} + {z^2} + 2x + 2y - 2z + 4 = 0\)
Phương pháp giải:
Các phương trình ở câu a và b đều là phương trình mặt cầu có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\). Xác định \(a\), \(b\), \(c\), \(d\) và tính \({a^2} + {b^2} + {c^2} - d\), rồi rút ra kết luận.
Lời giải chi tiết:
Các phương trình ở câu a và b đều là phương trình mặt cầu có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\).
a) Với phương trình \({x^2} + {y^2} + {z^2} + 4z - 32 = 0\), ta có \(a = 0\), \(b = 0\), \(c = - 2\) và \(d = - 32\).
Ta có \({a^2} + {b^2} + {c^2} - d = {0^2} + {0^2} + {\left( { - 2} \right)^2} + 32 = 36 > 0\).
Vậy phương trình \({x^2} + {y^2} + {z^2} + 4z - 32 = 0\) là phương trình mặt cầu tâm \(I\left( {0;0; - 2} \right)\) và bán kính \(R = 6\).
b) Với phương trình \({x^2} + {y^2} + {z^2} + 2x + 2y - 2z + 4 = 0\), ta có \(a = - 1\), \(b = - 1\), \(c = 1\) và \(d = 4\).
Ta có \({a^2} + {b^2} + {c^2} - d = {\left( { - 1} \right)^2} + {\left( { - 1} \right)^2} + {1^2} - 4 = - 1 < 0.\)
Vậy phương trình \({x^2} + {y^2} + {z^2} + 2x + 2y - 2z + 4 = 0\) không là phương trình mặt cầu.
Trả lời câu hỏi Vận dụng 1 trang 62 SGK Toán 12 Chân trời sáng tạo
Trong không gian \(Oxyz\) (đơn vị của các trục toạ độ là mét), các nhà nghiên cứu khí tượng dùng một phần mềm mô phỏng bề mặt của một quả bóng thám không có dạng hình cầu bằng phương trình \({\left( {x - 300} \right)^2} + {\left( {y - 400} \right)^2} + {\left( {z - 2000} \right)^2} = 1\). Tìm toạ độ tâm, bán kính của quả bóng và tính khoảng cách từ tâm của quả bóng đến mặt đất có phương trình \(z = 0\).

Phương pháp giải:
Từ phương trình mặt cầu, chỉ ra tâm và bán kính của quả bóng thám không. Sau đó sử dụng công thức tính khoảng cách từ một điểm đến một mặt phẳng để tính khoảng cách từ tâm của quả bóng đến mặt đất.
Lời giải chi tiết:
Phương trình bề mặt của quả bóng thám không là \({\left( {x - 300} \right)^2} + {\left( {y - 400} \right)^2} + {\left( {z - 2000} \right)^2} = 1\), suy ra quả bóng có tâm \(I\left( {300;400;2000} \right)\) và bán kính \(R = 1.\)
Khoảng cách từ tâm quả bóng đến mặt đất là
\(d = \frac{{\left| {0.300 + 0.400 + 1.2000 + 0} \right|}}{{\sqrt {{0^2} + {0^2} + {1^2}} }} = 2000\) (mét).
Trả lời câu hỏi Hoạt động 1 trang 61 SGK Toán 12 Chân trời sáng tạo
Trong không gian \(Oxyz\), cho mặt cầu \(S\left( {I;R} \right)\) có tâm \(I\left( {a;b;c} \right)\) và bán kính \(R\). Xét một điểm \(M\left( {x;y;z} \right)\) thay đổi.
a) Tính khoảng cách \(IM\) theo \(x\), \(y\), \(z\) và \(a\), \(b\), \(c\).
b) Nêu điều kiện cần và đủ của \(x\), \(y\), \(z\) để điểm \(M\left( {x;y;z} \right)\) nằm trên mặt cầu \(S\left( {I;R} \right)\).

Phương pháp giải:
a) Sử dụng công thức tính khoảng cách giữa hai điểm trong không gian để tính khoảng cách \(IM\).
b) Để điểm \(M\) nằm trên mặt cầu \(S\left( {I;R} \right)\) thì \(IM = R\).
Lời giải chi tiết:
a) Ta có \(I\left( {a;b;c} \right)\) và \(M\left( {x;y;z} \right)\). Suy ra \(IM = \sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2} + {{\left( {z - c} \right)}^2}} \).
b) Điều kiện cần và đủ của \(x\), \(y\), \(z\) để điểm \(M\left( {x;y;z} \right)\) nằm trên mặt cầu \(S\left( {I;R} \right)\) là \(IM = R\), điều này tương đương với
\(\sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2} + {{\left( {z - c} \right)}^2}} = R \Leftrightarrow {\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).
Trả lời câu hỏi Hoạt động 1 trang 61 SGK Toán 12 Chân trời sáng tạo
Trong không gian \(Oxyz\), cho mặt cầu \(S\left( {I;R} \right)\) có tâm \(I\left( {a;b;c} \right)\) và bán kính \(R\). Xét một điểm \(M\left( {x;y;z} \right)\) thay đổi.
a) Tính khoảng cách \(IM\) theo \(x\), \(y\), \(z\) và \(a\), \(b\), \(c\).
b) Nêu điều kiện cần và đủ của \(x\), \(y\), \(z\) để điểm \(M\left( {x;y;z} \right)\) nằm trên mặt cầu \(S\left( {I;R} \right)\).

Phương pháp giải:
a) Sử dụng công thức tính khoảng cách giữa hai điểm trong không gian để tính khoảng cách \(IM\).
b) Để điểm \(M\) nằm trên mặt cầu \(S\left( {I;R} \right)\) thì \(IM = R\).
Lời giải chi tiết:
a) Ta có \(I\left( {a;b;c} \right)\) và \(M\left( {x;y;z} \right)\). Suy ra \(IM = \sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2} + {{\left( {z - c} \right)}^2}} \).
b) Điều kiện cần và đủ của \(x\), \(y\), \(z\) để điểm \(M\left( {x;y;z} \right)\) nằm trên mặt cầu \(S\left( {I;R} \right)\) là \(IM = R\), điều này tương đương với
\(\sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2} + {{\left( {z - c} \right)}^2}} = R \Leftrightarrow {\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).
Trả lời câu hỏi Thực hành 1 trang 62 SGK Toán 12 Chân trời sáng tạo
Viết phương trình mặt cầu \(\left( S \right)\):
a) Có tâm \(I\left( {3; - 2; - 4} \right)\), bán kính \(R = 10\).
b) Có đường kính \(EF\) với \(E\left( {3; - 1;8} \right)\) và \(F\left( {7; - 3;0} \right)\).
c) Có tâm \(M\left( { - 2;1;3} \right)\) và đi qua điểm \(N\left( {2; - 3; - 4} \right)\).
Phương pháp giải:
a) Mặt cầu \(\left( S \right)\) tâm \(I\left( {a;b;c} \right)\) và bán kính \(R\) có phương trình là
\({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\)
b) Mặt cầu \(\left( S \right)\) có đường kính \(EF\), suy ra \(\left( S \right)\) có tâm \(I\) là trung điểm của \(EF\) và bán kính bằng \(\frac{{EF}}{2}\), từ đó viết phương trình mặt cầu \(\left( S \right)\) theo như câu a.
c) Mặt cầu \(\left( S \right)\) có tâm \(M\) và đi qua \(N\), nên \(MN\) là một bán kính của \(\left( S \right)\), từ đó viết phương trình mặt cầu \(\left( S \right)\) theo như câu a.
Lời giải chi tiết:
a) Mặt cầu \(\left( S \right)\) tâm \(I\left( {3; - 2; - 4} \right)\), bán kính \(R = 10\) có phương trình là
\({\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 4} \right)^2} = 100\).
b) Mặt cầu \(\left( S \right)\) có đường kính \(EF\), suy ra \(\left( S \right)\) có tâm \(I\) là trung điểm của \(EF\) và bán kính bằng \(\frac{{EF}}{2}\).
Ta có \(E\left( {3; - 1;8} \right)\) và \(F\left( {7; - 3;0} \right)\), suy ra \(I\left( {5; - 2;4} \right)\).
Ta có \(EF = \sqrt {{{\left( {3 - 7} \right)}^2} + {{\left( { - 1 + 3} \right)}^2} + {{\left( {8 - 0} \right)}^2}} = 2\sqrt {21} \), suy ra \(R = \frac{{EF}}{2} = \sqrt {21} \).
Vậy phương trình mặt cầu \(\left( S \right)\) là \({\left( {x - 5} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 4} \right)^2} = 21\).
c) Mặt cầu \(\left( S \right)\) có tâm \(M\) và đi qua \(N\), nên \(MN\) là một bán kính của \(\left( S \right)\).
Ta có \(MN = \sqrt {{{\left( { - 2 - 2} \right)}^2} + {{\left( {1 + 3} \right)}^2} + {{\left( {3 + 4} \right)}^2}} = 9\).
Vậy phương trình mặt cầu \(\left( S \right)\) là \({\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 3} \right)^2} = 81\).
Trả lời câu hỏi Vận dụng 1 trang 62 SGK Toán 12 Chân trời sáng tạo
Trong không gian \(Oxyz\) (đơn vị của các trục toạ độ là mét), các nhà nghiên cứu khí tượng dùng một phần mềm mô phỏng bề mặt của một quả bóng thám không có dạng hình cầu bằng phương trình \({\left( {x - 300} \right)^2} + {\left( {y - 400} \right)^2} + {\left( {z - 2000} \right)^2} = 1\). Tìm toạ độ tâm, bán kính của quả bóng và tính khoảng cách từ tâm của quả bóng đến mặt đất có phương trình \(z = 0\).

Phương pháp giải:
Từ phương trình mặt cầu, chỉ ra tâm và bán kính của quả bóng thám không. Sau đó sử dụng công thức tính khoảng cách từ một điểm đến một mặt phẳng để tính khoảng cách từ tâm của quả bóng đến mặt đất.
Lời giải chi tiết:
Phương trình bề mặt của quả bóng thám không là \({\left( {x - 300} \right)^2} + {\left( {y - 400} \right)^2} + {\left( {z - 2000} \right)^2} = 1\), suy ra quả bóng có tâm \(I\left( {300;400;2000} \right)\) và bán kính \(R = 1.\)
Khoảng cách từ tâm quả bóng đến mặt đất là
\(d = \frac{{\left| {0.300 + 0.400 + 1.2000 + 0} \right|}}{{\sqrt {{0^2} + {0^2} + {1^2}} }} = 2000\) (mét).
Trả lời câu hỏi Hoạt động 2 trang 63 SGK Toán 12 Chân trời sáng tạo
a) Trong không gian \(Oxyz\), cho điểm \(M\left( {x;y;z} \right)\) thay đổi có toạ độ luôn thoả mãn phương trình \({x^2} + {y^2} + {z^2} - 2x - 4y - 6z - 11 = 0\). (*)
i) Biến đổi (*) về dạng \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 25\).
ii) Chứng tỏ \(M\left( {x;y;z} \right)\) luôn thuộc một mặt cầu \(\left( S \right)\). Tìm tâm và bán kính của \(\left( S \right)\)
b) Bằng cách biến đổi phương trình \({x^2} + {y^2} + {z^2} - 2x - 4y - 6z + 15 = 0\) (**) về dạng \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = - 1\), hãy cho biết phương trình (**) có thể là phương trình mặt cầu hay không.
Phương pháp giải:
a) Sử dụng các hằng đẳng thức để đưa phương trình (*) về dạng như đề bài yêu cầu, từ đó suy ra điểm \(M\) luôn thuộc mặt cầu \(\left( S \right)\).
b) Sử dụng hằng đẳng thức để đưa phương trình (**) về dạng như đề bài yêu cầu, rồi kết luận.
Lời giải chi tiết:
a)
i) Ta có
\(\begin{array}{l}{x^2} + {y^2} + {z^2} - 2x - 4y - 6z - 11 = 0\\ \Leftrightarrow \left( {{x^2} - 2x + 1} \right) + \left( {{y^2} - 4y + 4} \right) + \left( {{z^2} - 6z + 9} \right) - 25 = 0\\ \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 25\end{array}.\)
ii) Do điểm \(M\left( {x;y;z} \right)\) có toạ độ thoả mãn phương trình (*), suy ra điểm \(M\) thoả mãn phương trình \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 25\). Vậy điểm \(M\) thuộc mặt cầu \(\left( S \right)\) có tâm \(I\left( {1;2;3} \right)\) và bán kính \(R = \sqrt {25} = 5\).
b) Ta có
\(\begin{array}{l}{x^2} + {y^2} + {z^2} - 2x - 4y - 6z + 15 = 0\\ \Leftrightarrow \left( {{x^2} - 2x + 1} \right) + \left( {{y^2} - 4y + 4} \right) + \left( {{z^2} - 6z + 9} \right) + 1 = 0\\ \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = - 1\end{array}.\)
Do \( - 1 < 0\), nên phương trình trên không là phương trình mặt cầu. Suy ra (**) không là phương trình mặt cầu.
Trả lời câu hỏi Thực hành 2 trang 63 SGK Toán 12 Chân trời sáng tạo
Trong các phương trình sau, phương trình nào là phương trình mặt cầu? Xác định tâm và bán kính của mặt cầu đó.
a) \({x^2} + {y^2} + {z^2} + 4z - 32 = 0\)
b) \({x^2} + {y^2} + {z^2} + 2x + 2y - 2z + 4 = 0\)
Phương pháp giải:
Các phương trình ở câu a và b đều là phương trình mặt cầu có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\). Xác định \(a\), \(b\), \(c\), \(d\) và tính \({a^2} + {b^2} + {c^2} - d\), rồi rút ra kết luận.
Lời giải chi tiết:
Các phương trình ở câu a và b đều là phương trình mặt cầu có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\).
a) Với phương trình \({x^2} + {y^2} + {z^2} + 4z - 32 = 0\), ta có \(a = 0\), \(b = 0\), \(c = - 2\) và \(d = - 32\).
Ta có \({a^2} + {b^2} + {c^2} - d = {0^2} + {0^2} + {\left( { - 2} \right)^2} + 32 = 36 > 0\).
Vậy phương trình \({x^2} + {y^2} + {z^2} + 4z - 32 = 0\) là phương trình mặt cầu tâm \(I\left( {0;0; - 2} \right)\) và bán kính \(R = 6\).
b) Với phương trình \({x^2} + {y^2} + {z^2} + 2x + 2y - 2z + 4 = 0\), ta có \(a = - 1\), \(b = - 1\), \(c = 1\) và \(d = 4\).
Ta có \({a^2} + {b^2} + {c^2} - d = {\left( { - 1} \right)^2} + {\left( { - 1} \right)^2} + {1^2} - 4 = - 1 < 0.\)
Vậy phương trình \({x^2} + {y^2} + {z^2} + 2x + 2y - 2z + 4 = 0\) không là phương trình mặt cầu.
Mục 1 của SGK Toán 12 tập 2 chương trình Chân trời sáng tạo thường tập trung vào một chủ đề quan trọng trong chương trình học. Việc nắm vững kiến thức và kỹ năng giải bài tập trong mục này là vô cùng cần thiết để học sinh có thể đạt kết quả tốt trong các bài kiểm tra và kỳ thi sắp tới. Tusach.vn xin giới thiệu lời giải chi tiết cho các bài tập trang 61, 62, 63, giúp các em học sinh tự tin hơn trong quá trình học tập.
Trước khi đi vào giải bài tập, chúng ta cần nắm vững nội dung chính của Mục 1. Thông thường, mục này sẽ bao gồm:
Dưới đây là lời giải chi tiết cho từng bài tập trong Mục 1 trang 61, 62, 63 SGK Toán 12 tập 2 Chân trời sáng tạo:
(Nội dung bài tập và lời giải chi tiết)
Giải:
(Các bước giải chi tiết, kèm theo giải thích rõ ràng)
(Nội dung bài tập và lời giải chi tiết)
Giải:
(Các bước giải chi tiết, kèm theo giải thích rõ ràng)
(Nội dung bài tập và lời giải chi tiết)
Giải:
(Các bước giải chi tiết, kèm theo giải thích rõ ràng)
Để giải bài tập Toán 12 tập 2 hiệu quả, các em học sinh nên:
Tusach.vn cam kết cung cấp cho học sinh những lời giải chính xác, dễ hiểu và đầy đủ nhất. Chúng tôi luôn cập nhật nội dung mới nhất và đa dạng các dạng bài tập để đáp ứng nhu cầu học tập của các em. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác!
| Chủ đề | Trang | Link |
|---|---|---|
| Giải SGK Toán 12 tập 2 | Tất cả | Tusach.vn |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập