Bài tập 9 trang 43 SGK Toán 12 tập 2 thuộc chương trình Toán 12 Chân trời sáng tạo, yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
tusach.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập này, giúp các em học sinh hiểu rõ phương pháp và tự tin làm bài tập.
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB = 2a\), \(AD = 5a\), \(SA = 3a\). Bằng cách thiết lập hệ trục toạ độ \(Oxyz\) như hình dưới đây, tính khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {SBC} \right).\)
Đề bài
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB = 2a\), \(AD = 5a\), \(SA = 3a\). Bằng cách thiết lập hệ trục toạ độ \(Oxyz\) như hình dưới đây, tính khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {SBC} \right).\)

Phương pháp giải - Xem chi tiết
Xác định toạ độ các điểm \(A\), \(S\), \(B\), \(C\). Viết phương trình mặt phẳng \(\left( {SBC} \right)\), từ đó tính được khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {SBC} \right).\)
Lời giải chi tiết
Theo hình vẽ, toạ độ điểm \(A\) là \(A\left( {0;0;0} \right).\)
Điểm \(B\) nằm trên trục \(Ox\), \({x_B} > 0\) và \(AB = 2a\) nên toạ độ điểm \(B\) là \(B\left( {2a;0;0} \right).\)
Điểm \(S\) nằm trên trục \(Oz\), \({z_S} > 0\) và \(SA = 3a\) nên toạ độ điểm \(S\) là \(S\left( {0;0;3a} \right).\)
Điểm \(D\) nằm trên trục \(Oy\), \({y_D} > 0\) và \(AD = 5a\) nên toạ độ điểm \(D\) là \(D\left( {0;5a;0} \right).\)
Điểm \(C\) nằm trên mặt phẳng \(\left( {Oxy} \right)\), \(CB \bot Ox\), \(CD \bot Oy\) nên toạ độ điểm \(C\) là \(C\left( {2a;5a;0} \right).\)
Mặt phẳng \(\left( {SBC} \right)\) đi qua \(S\), \(B\), \(C\). Ta có \(\overrightarrow {SB} = \left( {2a;0; - 3a} \right)\) và \(\overrightarrow {BC} = \left( {0;5a;0} \right)\). Suy ra một cặp vectơ chỉ phương của mặt phẳng \(\left( {SBC} \right)\) là \(\vec u = \frac{1}{a}\overrightarrow {SB} = \left( {2;0; - 3} \right)\) và \(\vec v = \frac{1}{a}\overrightarrow {BC} = \left( {0;5;0} \right).\)
Từ đó, một vectơ pháp tuyến của mặt phẳng \(\left( {SBC} \right)\) là
\(\vec n = \left[ {\vec u,\vec v} \right] = \left( {0.0 - \left( { - 3} \right).5;\left( { - 3} \right).0 - 2.0;2.5 - 0.0} \right) = \left( {15;0;10} \right).\)
Vậy phương trình mặt phẳng \(\left( {SBC} \right)\) là
\(15\left( {x - 0} \right) + 0\left( {y - 0} \right) + 10\left( {z - 3a} \right) = 0 \Leftrightarrow 3x + 2z - 6a = 0.\)
Khoảng cách từ \(A\) đến mặt phẳng \(\left( {SBC} \right)\) là:
\(d\left( {A,\left( {SBC} \right)} \right) = \frac{{\left| {3.0 + 2.0 - 6a} \right|}}{{\sqrt {{3^2} + {2^2}} }} = \frac{{6a\sqrt {13} }}{{13}}.\)
Bài tập 9 trang 43 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài toán quan trọng trong chương trình học, đòi hỏi học sinh phải nắm vững kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Dưới đây là hướng dẫn chi tiết cách giải bài tập này, giúp các em học sinh hiểu rõ phương pháp và tự tin làm bài tập.
Cho hàm số f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.
f'(x) = 3x2 - 6x
3x2 - 6x = 0 ⇔ 3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| f'(x) | + | - | + | |
| f(x) | Đồng biến | Nghịch biến | Đồng biến |
Dựa vào bảng xét dấu, ta thấy:
Khi giải các bài toán về cực trị của hàm số, cần thực hiện đầy đủ các bước sau:
Ngoài bài tập 9, các em học sinh có thể tham khảo thêm các bài tập tương tự trong SGK Toán 12 tập 2 - Chân trời sáng tạo để củng cố kiến thức và rèn luyện kỹ năng giải toán. Việc hiểu rõ lý thuyết và thực hành giải nhiều bài tập khác nhau sẽ giúp các em nắm vững kiến thức và đạt kết quả tốt trong các kỳ thi.
Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ tự tin giải bài tập 9 trang 43 SGK Toán 12 tập 2 - Chân trời sáng tạo và đạt kết quả tốt trong môn Toán.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập