Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách giáo khoa Toán 12 tập 1 - Chân trời sáng tạo. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài tập 3 trang 24, từ đó củng cố kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu nhất, kèm theo các lưu ý quan trọng để bạn có thể áp dụng vào các bài tập tương tự.
Tìm các tiệm cận của đồ thị hàm số sau: a) \(y = \frac{{2x - 3}}{{5{x^2} - 15x + 10}}\) b) \(y = \frac{{{x^2} + x - 1}}{x}\) c) \(y = \frac{{16{x^2} - 8x}}{{16{x^2} + 1}}\)
Đề bài
Tìm các tiệm cận của đồ thị hàm số sau:
a) \(y = \frac{{2x - 3}}{{5{x^2} - 15x + 10}}\)

b) \(y = \frac{{{x^2} + x - 1}}{x}\)

c) \(y = \frac{{16{x^2} - 8x}}{{16{x^2} + 1}}\)

Phương pháp giải - Xem chi tiết
Quan sát đồ thị
Lời giải chi tiết
a) Đường thẳng x = 1 và x = 2 là tiệm cận đứng của đồ thị hàm số \(y = \frac{{2x - 3}}{{5{x^2} - 15x + 10}}\)
Đường thẳng y = 0 là tiệm cận ngang của đồ thị hàm số \(y = \frac{{2x - 3}}{{5{x^2} - 15x + 10}}\)
b) Đường thẳng x = 0 là tiệm cận đứng của đồ thị hàm số \(y = \frac{{{x^2} + x - 1}}{x}\)
Đường thẳng y = \(x + 1\) là tiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} + x - 1}}{x}\)
c) Đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số \(y = \frac{{16{x^2} - 8x}}{{16{x^2} + 1}}\)
Bài tập 3 trang 24 SGK Toán 12 tập 1 - Chân trời sáng tạo thuộc chương trình học về giới hạn của hàm số. Đây là một phần kiến thức quan trọng, nền tảng cho các chương trình học toán cao hơn. Việc nắm vững các khái niệm và phương pháp giải bài tập trong chương này sẽ giúp học sinh tự tin hơn khi làm bài kiểm tra và thi cử.
Bài tập 3 yêu cầu học sinh tính giới hạn của hàm số tại một điểm cho trước. Để giải bài tập này, học sinh cần nắm vững các định nghĩa về giới hạn, các tính chất của giới hạn và các phương pháp tính giới hạn như phương pháp chia, phương pháp nhân liên hợp, phương pháp sử dụng giới hạn đặc biệt.
Để giúp các bạn học sinh hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ trình bày lời giải chi tiết từng bước như sau:
Giả sử bài tập 3 có dạng: Tính limx→2 (x2 - 4) / (x - 2)
Lời giải:
Khi tính giới hạn, cần lưu ý các điểm sau:
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự trong SGK Toán 12 tập 1 - Chân trời sáng tạo hoặc các đề thi thử. Việc luyện tập thường xuyên sẽ giúp bạn nắm vững kiến thức và tự tin hơn khi làm bài.
Tusach.vn luôn đồng hành cùng bạn trên con đường chinh phục kiến thức. Chúng tôi cung cấp đầy đủ các lời giải bài tập, tài liệu học tập và các thông tin hữu ích khác để giúp bạn học tập hiệu quả. Hãy truy cập tusach.vn để khám phá thêm nhiều điều thú vị!
| Chương | Bài | Trang |
|---|---|---|
| Giới hạn | 3 | 24 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập