Bài tập 7 trang 18 SGK Toán 12 tập 1 thuộc chương trình học Toán 12 Chân trời sáng tạo, tập trung vào việc rèn luyện kỹ năng về giới hạn của hàm số. Tusach.vn xin giới thiệu lời giải chi tiết, dễ hiểu, giúp học sinh hiểu rõ bản chất bài toán và tự tin giải các bài tập tương tự.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12, đảm bảo cung cấp cho bạn nguồn tài liệu học tập đáng tin cậy.
Hộp sữa \(1l\) được thiết kế dạng hình hộp chữ nhật với đáy là hình vuông cạnh x cm. Tìm x để diện tích toàn phần của hộp nhỏ nhất.
Đề bài
Hộp sữa \(1l\) được thiết kế dạng hình hộp chữ nhật với đáy là hình vuông cạnh x cm. Tìm x để diện tích toàn phần của hộp nhỏ nhất.
Phương pháp giải - Xem chi tiết
Tìm mối liên hệ giữa chiều cao và cạnh đáy, từ đó lập hàm số biểu diễn diện tích toàn phần của hộp theo x. Sau đó tìm đạo hàm, lập bảng biến thiên và xác định giá trị nhỏ nhất
Lời giải chi tiết
Gọi chiều cao của hộp là h (cm)
Thể tích của hộp là: \(V = h.{x^2} = 1 \Leftrightarrow h = \frac{1}{{{x^2}}}\)
Diện tích toàn phần của hộp là: \(y = {S_{tp}} = {S_{xq}} + {S_{day}} = 4hx + 2{x^2} = 4.\frac{1}{{{x^2}}}.x + 2{x^2} = 2{x^2} + \frac{4}{x}\)
Tập xác định: \(D = (0; + \infty )\)
\(y' = 4x - \frac{4}{{{x^2}}} = 0 \Leftrightarrow x = 1\)
Bảng biến thiên:

Từ bảng biến thiên, ta thấy \(\mathop {\min }\limits_D y = y(1) = 6\)
Vậy x = 1cm thì diện tích toàn phần của hộp nhỏ nhất và bằng 6 \(c{m^2}\)
Bài tập 7 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về giới hạn của hàm số. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản về giới hạn, các định lý liên quan và các phương pháp tính giới hạn thường gặp.
Bài tập yêu cầu tính các giới hạn sau:
1. Giải lim (x→2) (x^2 - 3x + 2) / (x - 2)
Ta có thể phân tích tử thức thành nhân tử:
x^2 - 3x + 2 = (x - 1)(x - 2)
Do đó:
lim (x→2) (x^2 - 3x + 2) / (x - 2) = lim (x→2) (x - 1)(x - 2) / (x - 2) = lim (x→2) (x - 1) = 2 - 1 = 1
2. Giải lim (x→-1) (x^3 + 1) / (x + 1)
Ta có thể phân tích tử thức thành nhân tử:
x^3 + 1 = (x + 1)(x^2 - x + 1)
Do đó:
lim (x→-1) (x^3 + 1) / (x + 1) = lim (x→-1) (x + 1)(x^2 - x + 1) / (x + 1) = lim (x→-1) (x^2 - x + 1) = (-1)^2 - (-1) + 1 = 1 + 1 + 1 = 3
3. Giải lim (x→0) (√(x+1) - 1) / x
Để tính giới hạn này, ta có thể sử dụng phương pháp nhân liên hợp:
lim (x→0) (√(x+1) - 1) / x = lim (x→0) [(√(x+1) - 1)(√(x+1) + 1)] / [x(√(x+1) + 1)] = lim (x→0) (x+1 - 1) / [x(√(x+1) + 1)] = lim (x→0) x / [x(√(x+1) + 1)] = lim (x→0) 1 / (√(x+1) + 1) = 1 / (√(0+1) + 1) = 1 / (1 + 1) = 1/2
Tusach.vn là địa chỉ tin cậy cung cấp lời giải bài tập Toán 12, đáp án nhanh chóng và chính xác. Chúng tôi luôn cập nhật nội dung mới nhất theo chương trình học, giúp bạn học tập hiệu quả và đạt kết quả tốt nhất. Hãy truy cập Tusach.vn để khám phá thêm nhiều tài liệu hữu ích khác!
| Bài tập | Lời giải |
|---|---|
| Bài tập 7a | 1 |
| Bài tập 7b | 3 |
| Bài tập 7c | 1/2 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập