Bài tập 4 trang 28 SGK Toán 12 tập 2 thuộc chương trình Toán 12 Chân trời sáng tạo, tập trung vào việc rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Tusach.vn xin giới thiệu lời giải chi tiết, dễ hiểu, giúp các em học sinh hiểu rõ bản chất bài toán và tự tin giải các bài tập tương tự.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác và cập nhật nhất để hỗ trợ tối đa cho quá trình học tập của các bạn.
Khẳng định nào sau đây đúng? A. (int {{{left( {x - frac{1}{x}} right)}^2}dx} = frac{{{x^3}}}{3} - 2x - frac{1}{x} + C) B. (int {{{left( {x - frac{1}{x}} right)}^2}dx = frac{{{x^3}}}{3} - 2x + frac{1}{x} + C} ) C. (int {{{left( {x - frac{1}{x}} right)}^2}dx} = frac{1}{3}{left( {x - frac{1}{x}} right)^3} + C) D. (int {{{left( {x - frac{1}{x}} right)}^2}dx} = frac{1}{3}{left( {x - frac{1}{x}} right)^3}left( {1 + frac{1}{{{x^2}}}} right) + C)
Đề bài
Khẳng định nào sau đây đúng?A. \(\int {{{\left( {x - \frac{1}{x}} \right)}^2}dx} = \frac{{{x^3}}}{3} - 2x - \frac{1}{x} + C\)B. \(\int {{{\left( {x - \frac{1}{x}} \right)}^2}dx = \frac{{{x^3}}}{3} - 2x + \frac{1}{x} + C} \)C. \(\int {{{\left( {x - \frac{1}{x}} \right)}^2}dx} = \frac{1}{3}{\left( {x - \frac{1}{x}} \right)^3} + C\)D. \(\int {{{\left( {x - \frac{1}{x}} \right)}^2}dx} = \frac{1}{3}{\left( {x - \frac{1}{x}} \right)^3}\left( {1 + \frac{1}{{{x^2}}}} \right) + C\)
Phương pháp giải - Xem chi tiết
Tính \(\int {{{\left( {x - \frac{1}{x}} \right)}^2}dx} \) dựa vào các công thức tính nguyên hàm đã học.
Lời giải chi tiết
Ta có
\(\int {{{\left( {x - \frac{1}{x}} \right)}^2}dx} = \int {\left( {{x^2} - 2 + \frac{1}{{{x^2}}}} \right)dx} = \int {{x^2}dx} - 2\int {dx} + \int {\frac{1}{{{x^2}}}dx} = \frac{{{x^3}}}{3} - 2x - \frac{1}{x} + C\)
Vậy đáp án đúng là A.
Bài tập 4 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Dưới đây là hướng dẫn giải chi tiết bài tập này, giúp các em hiểu rõ từng bước và tự tin giải các bài tập tương tự.
Cho hàm số y = f(x) có đạo hàm f'(x) = (x-1)(x+2). Tìm các khoảng đơn điệu của hàm số.
Để tìm các khoảng đơn điệu của hàm số y = f(x), ta cần xét dấu đạo hàm f'(x).
f'(x) = 0 khi (x-1)(x+2) = 0, tức là x = 1 hoặc x = -2.
| x | -∞ | -2 | 1 | +∞ |
|---|---|---|---|---|
| x - 1 | - | - | + | + |
| x + 2 | - | + | + | + |
| f'(x) | + | - | + | + |
| f(x) | Đồng biến | Nghịch biến | Đồng biến | Đồng biến |
Dựa vào bảng xét dấu, ta có thể kết luận:
Khi giải các bài tập về khảo sát hàm số, việc xét dấu đạo hàm là bước quan trọng nhất. Hãy đảm bảo bạn hiểu rõ cách xác định các điểm dừng và lập bảng xét dấu một cách chính xác.
Ngoài việc tìm các khoảng đơn điệu, đạo hàm còn được sử dụng để tìm cực trị của hàm số, điểm uốn và vẽ đồ thị hàm số. Hãy luyện tập thêm nhiều bài tập để nắm vững kiến thức này.
Tusach.vn hy vọng với hướng dẫn chi tiết này, các bạn học sinh sẽ hiểu rõ cách giải bài tập 4 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo và tự tin hơn trong quá trình học tập. Nếu có bất kỳ thắc mắc nào, đừng ngần ngại liên hệ với chúng tôi để được hỗ trợ.
Các bài tập liên quan:
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập