Chào mừng các em học sinh đến với lời giải chi tiết bài tập mục 2 trang 63, 64 SGK Toán 12 tập 2, chương trình Chân trời sáng tạo.
Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp đáp án chính xác, dễ hiểu và phương pháp giải bài tập hiệu quả.
Bề mặt của một bóng thám không dạng hình cầu có phương trình ({x^2} + {y^2} + {z^2} - 200x - 600y - {rm{4 000}}z + {rm{4 099 900}} = 0). Tìm toạ độ tâm và bán kính mặt cầu.
Trả lời câu hỏi Vận dụng 3 trang 64 SGK Toán 12 Chân trời sáng tạo
Đầu in phun của một máy in 3D đang in bề mặt của một mặt cầu có phương trình \({x^2} + {y^2} + {z^2} + \frac{1}{8}x - \frac{1}{8}y - z + \frac{1}{{16}} = 0\). Tính khoảng cách từ đầu in phun đến tâm mặt cầu.

Phương pháp giải:
Khoảng cách từ đầu in phun đến tâm mặt cầu chính là bán kính của mặt cầu đó.
Phương trình mặt cầu có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\), xác định các hệ số \(a\), \(b\), \(c\), \(d\), sau đó tính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \).
Lời giải chi tiết:
Khoảng cách từ đầu in phun đến tâm mặt cầu chính là bán kính của mặt cầu đó.
Phương trình mặt cầu \({x^2} + {y^2} + {z^2} + \frac{1}{8}x - \frac{1}{8}y - z + \frac{1}{{16}} = 0\) có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\) với \(a = - \frac{1}{{16}}\), \(b = \frac{1}{{16}}\), \(c = \frac{1}{2}\) và \(d = \frac{1}{{16}}\).
Suy ra bán kính của mặt cầu là \(R = \sqrt {{{\left( { - \frac{1}{{16}}} \right)}^2} + {{\left( {\frac{1}{{16}}} \right)}^2} + {{\left( {\frac{1}{2}} \right)}^2} - \frac{1}{{16}}} = \frac{{5\sqrt 2 }}{{16}}\).
Trả lời câu hỏi Vận dụng 2 trang 64 SGK Toán 12 Chân trời sáng tạo
Bề mặt của một bóng thám không dạng hình cầu có phương trình \({x^2} + {y^2} + {z^2} - 200x - 600y - {\rm{4 000}}z + {\rm{4 099 900}} = 0\). Tìm toạ độ tâm và bán kính mặt cầu.

Phương pháp giải:
Phương trình của bề mặt bóng thám không là phương trình có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\). Xác định \(a\), \(b\), \(c\), \(d\) và tính \({a^2} + {b^2} + {c^2} - d\), rồi rút ra kết luận.
Lời giải chi tiết:
Phương trình của bề mặt bóng thám không là phương trình có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\), với \(a = 100\), \(b = 300\), \(c = 2{\rm{ 000}}\) và \(d = {\rm{4 099 900}}\).
Ta có \({a^2} + {b^2} + {c^2} - d = {100^2} + {300^2} + 2{\rm{ }}{000^2} - 4{\rm{ }}099{\rm{ }}900 = 100 > 0.\)
Vậy bóng thám không có tâm \(I\left( {100;300;2000} \right)\) và bán kính \(R = \sqrt {100} = 10\).
Trả lời câu hỏi Vận dụng 3 trang 64 SGK Toán 12 Chân trời sáng tạo
Đầu in phun của một máy in 3D đang in bề mặt của một mặt cầu có phương trình \({x^2} + {y^2} + {z^2} + \frac{1}{8}x - \frac{1}{8}y - z + \frac{1}{{16}} = 0\). Tính khoảng cách từ đầu in phun đến tâm mặt cầu.

Phương pháp giải:
Khoảng cách từ đầu in phun đến tâm mặt cầu chính là bán kính của mặt cầu đó.
Phương trình mặt cầu có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\), xác định các hệ số \(a\), \(b\), \(c\), \(d\), sau đó tính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \).
Lời giải chi tiết:
Khoảng cách từ đầu in phun đến tâm mặt cầu chính là bán kính của mặt cầu đó.
Phương trình mặt cầu \({x^2} + {y^2} + {z^2} + \frac{1}{8}x - \frac{1}{8}y - z + \frac{1}{{16}} = 0\) có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\) với \(a = - \frac{1}{{16}}\), \(b = \frac{1}{{16}}\), \(c = \frac{1}{2}\) và \(d = \frac{1}{{16}}\).
Suy ra bán kính của mặt cầu là \(R = \sqrt {{{\left( { - \frac{1}{{16}}} \right)}^2} + {{\left( {\frac{1}{{16}}} \right)}^2} + {{\left( {\frac{1}{2}} \right)}^2} - \frac{1}{{16}}} = \frac{{5\sqrt 2 }}{{16}}\).
Trả lời câu hỏi Vận dụng 2 trang 64 SGK Toán 12 Chân trời sáng tạo
Bề mặt của một bóng thám không dạng hình cầu có phương trình \({x^2} + {y^2} + {z^2} - 200x - 600y - {\rm{4 000}}z + {\rm{4 099 900}} = 0\). Tìm toạ độ tâm và bán kính mặt cầu.

Phương pháp giải:
Phương trình của bề mặt bóng thám không là phương trình có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\). Xác định \(a\), \(b\), \(c\), \(d\) và tính \({a^2} + {b^2} + {c^2} - d\), rồi rút ra kết luận.
Lời giải chi tiết:
Phương trình của bề mặt bóng thám không là phương trình có dạng \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\), với \(a = 100\), \(b = 300\), \(c = 2{\rm{ 000}}\) và \(d = {\rm{4 099 900}}\).
Ta có \({a^2} + {b^2} + {c^2} - d = {100^2} + {300^2} + 2{\rm{ }}{000^2} - 4{\rm{ }}099{\rm{ }}900 = 100 > 0.\)
Vậy bóng thám không có tâm \(I\left( {100;300;2000} \right)\) và bán kính \(R = \sqrt {100} = 10\).
Mục 2 trong SGK Toán 12 tập 2 Chân trời sáng tạo thường xoay quanh các chủ đề về đạo hàm, ứng dụng của đạo hàm trong việc khảo sát hàm số, hoặc các bài toán liên quan đến tích phân. Việc nắm vững kiến thức nền tảng và kỹ năng giải bài tập trong mục này là vô cùng quan trọng để đạt kết quả tốt trong các kỳ thi sắp tới.
Để hiểu rõ hơn về Mục 2, chúng ta cần xác định chính xác nội dung mà nó bao gồm. Thông thường, các bài tập trong mục này sẽ tập trung vào:
Dưới đây là hướng dẫn giải chi tiết một số bài tập tiêu biểu trong Mục 2 trang 63, 64 SGK Toán 12 tập 2 Chân trời sáng tạo:
Giải:
Sử dụng quy tắc đạo hàm của tổng, hiệu và lũy thừa, ta có:
f'(x) = 3x2 - 4x + 5
Giải:
Tính đạo hàm: y' = 2x - 4
Giải bất phương trình y' > 0: 2x - 4 > 0 => x > 2
Vậy hàm số đồng biến trên khoảng (2; +∞)
Để giải bài tập Mục 2 trang 63, 64 SGK Toán 12 tập 2 Chân trời sáng tạo một cách hiệu quả, bạn nên:
Tusach.vn tự hào là một trong những website cung cấp lời giải bài tập SGK Toán 12 tập 2 Chân trời sáng tạo đầy đủ và chính xác nhất. Chúng tôi luôn cập nhật nội dung mới nhất và cung cấp các phương pháp giải bài tập dễ hiểu, giúp các em học tập hiệu quả hơn. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác!
| Chủ đề | Mức độ khó | Lời khuyên |
|---|---|---|
| Tính đạo hàm | Dễ | Nắm vững công thức |
| Khảo sát hàm số | Trung bình | Luyện tập nhiều |
| Bài toán thực tế | Khó | Hiểu rõ bản chất |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập