Tusach.vn xin giới thiệu lời giải chi tiết bài tập 5 trang 12 SGK Toán 12 tập 2 - Chân trời sáng tạo. Bài tập này thuộc chương trình học Toán 12, tập trung vào các kiến thức về đạo hàm và ứng dụng của đạo hàm.
Chúng tôi luôn cố gắng cung cấp những lời giải chính xác, dễ hiểu, giúp các em học sinh có thể tự học và ôn tập hiệu quả. Hãy cùng Tusach.vn khám phá lời giải chi tiết ngay sau đây!
Tìm a) \(\int {x{{\left( {2x - 3} \right)}^2}dx} \) b) \(\int {{{\sin }^2}\frac{x}{2}dx} \) c) \(\int {{{\tan }^2}xdx} \) d) \(\int {{2^{3x}}{{.3}^x}} dx\)
Đề bài
Tìm
a) \(\int {x{{\left( {2x - 3} \right)}^2}dx} \)
b) \(\int {{{\sin }^2}\frac{x}{2}dx} \)
c) \(\int {{{\tan }^2}xdx} \)
d) \(\int {{2^{3x}}{{.3}^x}} dx\)
Phương pháp giải - Xem chi tiết
a) Khai triển biểu thức \(x{\left( {2x - 3} \right)^2}\), sau đó đưa về tính nguyên hàm của các hàm số sơ cấp.
b) Sử dụng công thức hạ bậc \({\sin ^2}\alpha = \frac{{1 - \cos 2\alpha }}{2}\), sau đó đưa về tính nguyên hàm của các hàm số sơ cấp.
c) Sử dụng công thức \({\tan ^2}x = \frac{1}{{{{\cos }^2}x}} - 1\), sau đó đưa về tính nguyên hàm của các hàm số sơ cấp.
d) Biến đổi \(\int {{2^{3x}}{{.3}^x}} dx\) về dạng \(\int {{a^x}dx} \), rồi dùng công thức nguyên hàm của hàm số mũ.
Lời giải chi tiết
a) \(\int {x{{\left( {2x - 3} \right)}^2}dx} = \int {x\left( {4{x^2} - 12x + 9} \right)dx} = \int {\left( {4{x^3} - 12{x^2} + 9x} \right)dx} \)
\( = 4\int {{x^3}dx} - 12\int {{x^2}dx} + 9\int {xdx} = 4.\frac{{{x^4}}}{4} - 12.\frac{{{x^3}}}{3} + 9.\frac{{{x^2}}}{2} + C = {x^4} - 4{x^3} + \frac{9}{2}{x^2} + C\)
b) \(\int {{{\sin }^2}\frac{x}{2}dx} = \int {\frac{{1 - \cos x}}{2}dx = \frac{1}{2}\int {dx} - \frac{1}{2}\int {\cos xdx} = \frac{1}{2}x - \frac{1}{2}\sin x + C} \)
c) \(\int {{{\tan }^2}xdx} = \int {\left( {\frac{1}{{{{\cos }^2}x}} - 1} \right)dx = \int {\frac{1}{{{{\cos }^2}x}}dx} - \int {dx} = \tan x - x + C} \)
d) \(\int {{2^{3x}}{{.3}^x}} dx = \int {{{\left( {{2^3}} \right)}^x}{{.3}^x}dx} = \int {{8^x}{{.3}^x}dx} = \int {{{24}^x}dx} = \frac{{{{24}^x}}}{{\ln 24}} + C\)
Bài tập 5 trang 12 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 12, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Dưới đây là hướng dẫn chi tiết cách giải bài tập này:
Bài tập yêu cầu chúng ta tìm đạo hàm của hàm số và sử dụng đạo hàm để giải quyết các bài toán liên quan đến tính đơn điệu, cực trị của hàm số. Cụ thể, bài tập có thể yêu cầu:
Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các kiến thức sau:
(Giả sử bài tập 5 là: Cho hàm số y = x3 - 3x2 + 2. Tìm cực đại, cực tiểu của hàm số.)
Bước 1: Tính đạo hàm cấp 1
y' = 3x2 - 6x
Bước 2: Tìm điểm tới hạn
y' = 0 ⇔ 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0
⇔ x = 0 hoặc x = 2
Vậy, các điểm tới hạn của hàm số là x = 0 và x = 2.
Bước 3: Lập bảng biến thiên
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| y' | + | - | + | |
| y | NB | ĐC | TC |
Bước 4: Kết luận
Hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2.
Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2.
Hy vọng với hướng dẫn chi tiết này, các em học sinh có thể tự tin giải bài tập 5 trang 12 SGK Toán 12 tập 2 - Chân trời sáng tạo một cách hiệu quả. Chúc các em học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập