1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài tập 7 trang 12 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 7 trang 12 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 7 trang 12 SGK Toán 12 tập 2 - Chân trời sáng tạo

Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách giáo khoa Toán 12 tập 2 - Chân trời sáng tạo. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài tập 7 trang 12, từ đó củng cố kiến thức và tự tin hơn trong quá trình học tập.

Chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu nhất, kèm theo các lưu ý quan trọng để bạn có thể áp dụng vào các bài tập tương tự.

Một chiếc xe đang chuyển động với tốc độ \({v_0} = 10{\rm{ }}\left( {{\rm{m/s}}} \right)\) thì tăng tốc với gia tốc không đổi \(a = 2{\rm{ }}\left( {{\rm{m/}}{{\rm{s}}^2}} \right)\). Tính quãng đường xe đó đi được trong 3 giây kể từ khi bắt đầu tăng tốc.

Đề bài

Một chiếc xe đang chuyển động với tốc độ \({v_0} = 10{\rm{ }}\left( {{\rm{m/s}}} \right)\) thì tăng tốc với gia tốc không đổi \(a = 2{\rm{ }}\left( {{\rm{m/}}{{\rm{s}}^2}} \right)\). Tính quãng đường xe đó đi được trong 3 giây kể từ khi bắt đầu tăng tốc.

Phương pháp giải - Xem chi tiếtGiải bài tập 7 trang 12 SGK Toán 12 tập 2 - Chân trời sáng tạo 1

Gọi \(s\left( t \right)\) (m) là quãng đường xe đi được sau \(t\) giây kể từ khi tăng tốc, \(v\left( t \right)\) (m/s) là vận tốc của xe sau \(t\) giây kể từ khi tăng tốc.

Do xe tăng tốc với gia tốc không đổi \(a = 2{\rm{ }}\left( {{\rm{m/}}{{\rm{s}}^2}} \right)\), nên vận tốc của xe sẽ là \(v\left( t \right) = {v_0} + at{\rm{ }}\left( {{\rm{m/s}}} \right)\).

Quãng đường xe đi được kể từ khi tăng tốc là \(s\left( t \right) = \int {v\left( t \right)dt} \), ta nguyên hàm hàm số \(v\left( t \right)\) để tính \(s\left( t \right)\). Do tại \(t = 0\) thì xe mới bắt đầu tăng tốc, nên ta có \(s\left( 0 \right) = 0\). Từ đó tính được hằng số \(C\).

Quãng đường xe đi được trong 3 giây kể từ khi tăng tốc là \(s\left( 3 \right)\).

Lời giải chi tiết

Gọi \(s\left( t \right)\) (m) là quãng đường xe đi được sau \(t\) giây kể từ khi tăng tốc, \(v\left( t \right)\) (m/s) là vận tốc của xe sau \(t\) giây kể từ khi tăng tốc.

Do xe tăng tốc với gia tốc không đổi \(a = 2{\rm{ }}\left( {{\rm{m/}}{{\rm{s}}^2}} \right)\), nên vận tốc của xe sẽ là \(v\left( t \right) = {v_0} + at = 10 + 2t{\rm{ }}\left( {{\rm{m/s}}} \right)\).

Quãng đường xe đi được kể từ khi tăng tốc là

\(s\left( t \right) = \int {v\left( t \right)dt} = \int {\left( {10 + 2t} \right)dt} = 10\int {dt} + 2\int {tdt} = 10t + 2\frac{{{t^2}}}{2} + C = 10t + {t^2} + C\)

Do tại \(t = 0\) thì xe mới bắt đầu tăng tốc, nên ta có \(s\left( 0 \right) = 0\).

Suy ra \(10.0 + {0^2} + C = 0 \Rightarrow C = 0\)

Vậy quãng đường xe đi được sau \(t\) giây kể từ khi tăng tốc là \(s\left( t \right) = 10t + {t^2}\).

Quãng đường xe đi được sau 3 giây kể từ khi tăng tốc là \(s\left( 3 \right) = 10.3 + {3^2} = 39{\rm{ }}\left( {\rm{m}} \right)\)

Giải bài tập 7 trang 12 SGK Toán 12 tập 2 - Chân trời sáng tạo: Tổng quan và Hướng dẫn chi tiết

Bài tập 7 trang 12 SGK Toán 12 tập 2 - Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và các ứng dụng của đạo hàm để giải quyết các bài toán cụ thể.

Nội dung bài tập 7 trang 12 SGK Toán 12 tập 2 - Chân trời sáng tạo

Thông thường, bài tập 7 sẽ bao gồm các dạng bài sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của một hàm số cho trước, có thể là hàm số đơn giản hoặc hàm số phức tạp.
  • Tìm đạo hàm cấp hai: Yêu cầu tìm đạo hàm cấp hai của một hàm số.
  • Ứng dụng đạo hàm để giải quyết các bài toán thực tế: Ví dụ như tìm vận tốc, gia tốc, hoặc xác định khoảng đồng biến, nghịch biến của hàm số.

Hướng dẫn giải bài tập 7 trang 12 SGK Toán 12 tập 2 - Chân trời sáng tạo (Ví dụ minh họa)

Để minh họa, chúng ta sẽ xem xét một ví dụ cụ thể. Giả sử bài tập yêu cầu tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.

  1. Bước 1: Xác định quy tắc đạo hàm cần sử dụng. Trong trường hợp này, chúng ta sẽ sử dụng quy tắc đạo hàm của tổng, hiệu, và lũy thừa.
  2. Bước 2: Áp dụng quy tắc đạo hàm.
    • Đạo hàm của x3 là 3x2.
    • Đạo hàm của 2x2 là 4x.
    • Đạo hàm của -5x là -5.
    • Đạo hàm của 1 là 0.
  3. Bước 3: Kết hợp các kết quả. Vậy, đạo hàm của f(x) là f'(x) = 3x2 + 4x - 5.

Các lưu ý quan trọng khi giải bài tập 7 trang 12 SGK Toán 12 tập 2 - Chân trời sáng tạo

  • Nắm vững các quy tắc đạo hàm cơ bản: Quy tắc đạo hàm của tổng, hiệu, tích, thương, hàm hợp, và các hàm số lượng giác.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để làm quen với các dạng bài và rèn luyện kỹ năng giải toán.
  • Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.
  • Sử dụng máy tính bỏ túi: Máy tính bỏ túi có thể giúp bạn tính toán nhanh chóng và chính xác hơn.

Tài liệu tham khảo hữu ích

Ngoài sách giáo khoa, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách bài tập Toán 12 tập 2 - Chân trời sáng tạo: Cung cấp nhiều bài tập luyện tập khác nhau.
  • Các trang web học toán trực tuyến: Ví dụ như tusach.vn, VietJack, Hoc24,...
  • Các video hướng dẫn giải toán trên YouTube: Có rất nhiều kênh YouTube cung cấp các video hướng dẫn giải toán chi tiết và dễ hiểu.

Kết luận

Bài tập 7 trang 12 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng với hướng dẫn chi tiết và các lưu ý quan trọng trên, bạn sẽ tự tin hơn trong quá trình giải bài tập và đạt kết quả tốt nhất.

Nếu bạn gặp bất kỳ khó khăn nào, đừng ngần ngại liên hệ với chúng tôi tại tusach.vn để được hỗ trợ.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN