Chào mừng các em học sinh đến với lời giải chi tiết mục 1 trang 6, 7, 8 SGK Toán 12 tập 1 chương trình Chân trời sáng tạo. Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp đáp án chính xác và dễ hiểu nhất.
Mục tiêu của chúng tôi là giúp các em hiểu sâu sắc kiến thức, rèn luyện kỹ năng giải bài tập và đạt kết quả tốt nhất trong môn Toán.
Tính đơn điệu của hàm số
Trả lời câu hỏi Thực hành 3 trang 9 SGK Toán 12 Chân trời sáng tạo
Chứng minh rằng hàm số \(f\left( x \right) = 3x - sinx\) đồng biến trên \(\mathbb{R}\)
Phương pháp giải:
Tìm tập xác định D, đạo hàm f’(x) và dựa vào tính chất \( - 1 \le \cos x \le 1\)
Lời giải chi tiết:
Tập xác định: \(D = \mathbb{R}\)
\(f'(x) = 3 - \cos x\)
Ta có: \( - 1 \le \cos x \le 1\) nên \(2 \le 3 - \cos x \le 4\). Vì vậy \(f'(x) > 0\forall x \in \mathbb{R}\)
=> Hàm số \(f\left( x \right){\rm{ }} = {\rm{ }}3x{\rm{ }} - {\rm{ }}sinx\) đồng biến trên \(\mathbb{R}\)
Trả lời câu hỏi Khám phá 1 trang 7 SGK Toán 12 Chân trời sáng tạo
Cho hàm số y = f(x) = \({x^2}\)
a) Từ đồ thị của hàm số y = f(x) (Hình 4), hãy chỉ ra các
khoảng đồng biến và nghịch biến của hàm số đã cho.
b) Tính đạo hàm f '(x) và xét dấu f '(x).
c) Từ đó, nhận xét về mối liên hệ giữa các khoảng đồng biến,
nghịch biến của hàm số với dấu của f '(x).

Phương pháp giải:
a) Hàm số y = f(x) gọi là đồng biến (tăng) trên K nếu với mọi \({x_1}\), \({x_2}\) thuộc K mà \({x_1}\) < \({x_2}\) thì f(\({x_1}\)) < f(\({x_2}\)). Hàm số y = f(x) gọi là nghịch biến (giảm) trên K nếu với mọi \({x_1}\), \({x_2}\) thuộc K mà \({x_1}\) < \({x_2}\) thì f(\({x_1}\)) > f(\({x_2}\)).
b) Dựa vào công thức đạo hàm để tìm f '(x)
c) So sánh và rút ra nhận xét
Lời giải chi tiết:
a) Hàm số đồng biến trên khoảng (0; \( + \infty \))
Hàm số nghịch biến trên khoảng (\( - \infty \); 0)
b) f '(x) = (\({x^2}\))' = 2x
Ta có:
f '(x) > 0 \( \Leftrightarrow 2x > 0 \Leftrightarrow x > 0\)
f '(x) < 0 \( \Leftrightarrow 2x < 0 \Leftrightarrow x < 0\)
c) Nhận xét:
f’(x) > 0 trên K thì y = f(x) đồng biến trên K
f’(x) < 0 trên K thì y = f(x) nghịch biến trên K
Trả lời câu hỏi Thực hành 2 trang 9 SGK Toán 12 Chân trời sáng tạo
Xét tính đơn điệu của các hàm số sau:
a) \(f(x) = {x^3} - 6{x^2} + 9x\)
b) \(g(x) = \frac{1}{x}\)
Phương pháp giải:
Xác định tập xác định D, đạo hàm f’(x) và lập bảng biến thiên
Lời giải chi tiết:
a) \(f(x) = {x^3} - 6{x^2} + 9x\)
Tập xác định: \(D = \mathbb{R}\)
\(f'(x) = 3{x^2} - 12x + 9\)
\(f'(x) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 1\end{array} \right.\)
Bảng biến thiên:

Vậy hàm số \(f(x) = {x^3} - 6{x^2} + 9x\) đồng biến trên các khoảng (\( - \infty \); 1) và (3; \( + \infty \)), nghịch biến trên khoảng (1; 3)
b) \(g(x) = \frac{1}{x}\)
Tập xác định: \(D = \mathbb{R}\backslash \{ 0\} \)
\(g'(x) = - \frac{1}{{{x^2}}}\)
Vì \({x^2} > 0\forall x \in \mathbb{R}\backslash \{ 0\} \) nên \(g'(x) < 0\forall x \in \mathbb{R}\backslash \{ 0\} \)
Bảng biến thiên:

Vậy hàm số \(g(x) = \frac{1}{x}\) nghịch biến trên các khoảng (\( - \infty \); 0) và (0; \( + \infty \))
Trả lời câu hỏi Thực hành 1 trang 7 SGK Toán 12 Chân trời sáng tạo
Tìm các khoảng đơn điệu của hàm số y = f(x) có đồ thị cho ở Hình 3.

Phương pháp giải:
Hàm số y = f(x) gọi là đồng biến (tăng) trên K nếu với mọi \({x_1}\), \({x_2}\) thuộc K mà \({x_1}\) < \({x_2}\) thì f(\({x_1}\)) < f(\({x_2}\)). Hàm số y = f(x) gọi là nghịch biến (giảm) trên K nếu với mọi \({x_1}\), \({x_2}\) thuộc K mà \({x_1}\) < \({x_2}\) thì f(\({x_1}\)) > f(\({x_2}\)).
Lời giải chi tiết:
Hàm số đồng biến trên các khoảng (−3; -2) và (-1; 0)
Hàm số nghịch biến trên khoảng (-2; -1) và (0; 1)
Trả lời câu hỏi Vận dụng 1 trang 9 SGK Toán 12 Chân trời sáng tạo
Hãy trả lời câu hỏi trong Khởi động (trang 6) bằng cách xét dấu đạo hàm của hàm số \(h\left( t \right) = 6{t^3} - 81{t^2} + 324t\) với \(0 \le t \le 8\)
Trong 8 phút đầu kể từ khi xuất phát, độ cao h (tính bằng mét) của khinh khí cầu vào thời điểm t phút được cho bởi công thức \(h\left( t \right) = 6{t^3} - 81{t^2} + 324t\). Đồ thị của hàm số h(t) được biểu diễn trong hình bên. Trong các khoảng thời gian nào khinh khí cầu tăng dần độ cao, giảm dần độ cao? Độ cao của khinh khí cầu vào các thời điểm 3 phút và 6 phút sau khi xuất phát có gì đặc biệt?

Phương pháp giải:
Xét dấu h’(x) để tìm ra các khoảng đồng biến, nghịch biến
Lời giải chi tiết:
\(h\left( t \right) = 6{t^3} - 81{t^2} + 324t\)
Tập xác định: \(D = \mathbb{R}\)
\(h'(t) = 18{t^2} - 162t + 324\)
\(h'(t) = 0 \Leftrightarrow \left[ \begin{array}{l}t = 3\\t = 6\end{array} \right.\)
Bảng biến thiên:

Trong thời gian từ lúc xuất phát đến thời điểm 3 phút, độ cao của khinh khí cầu tăng dần từ 0m lên 405m
Độ cao của khinh khí cầu tăng dần từ 0m lên 405m trong thời gian từ lúc xuất phát đến thời điểm 3 phút, từ 324m lên 480m trong thời gian từ 6 phút đến 8 phút
Độ cao của khinh khí cầu giảm dần từ 405m xuống 324m trong thời gian từ 3 phút đến 6 phút
Trả lời câu hỏi Thực hành 1 trang 7 SGK Toán 12 Chân trời sáng tạo
Tìm các khoảng đơn điệu của hàm số y = f(x) có đồ thị cho ở Hình 3.

Phương pháp giải:
Hàm số y = f(x) gọi là đồng biến (tăng) trên K nếu với mọi \({x_1}\), \({x_2}\) thuộc K mà \({x_1}\) < \({x_2}\) thì f(\({x_1}\)) < f(\({x_2}\)). Hàm số y = f(x) gọi là nghịch biến (giảm) trên K nếu với mọi \({x_1}\), \({x_2}\) thuộc K mà \({x_1}\) < \({x_2}\) thì f(\({x_1}\)) > f(\({x_2}\)).
Lời giải chi tiết:
Hàm số đồng biến trên các khoảng (−3; -2) và (-1; 0)
Hàm số nghịch biến trên khoảng (-2; -1) và (0; 1)
Trả lời câu hỏi Khám phá 1 trang 7 SGK Toán 12 Chân trời sáng tạo
Cho hàm số y = f(x) = \({x^2}\)
a) Từ đồ thị của hàm số y = f(x) (Hình 4), hãy chỉ ra các
khoảng đồng biến và nghịch biến của hàm số đã cho.
b) Tính đạo hàm f '(x) và xét dấu f '(x).
c) Từ đó, nhận xét về mối liên hệ giữa các khoảng đồng biến,
nghịch biến của hàm số với dấu của f '(x).

Phương pháp giải:
a) Hàm số y = f(x) gọi là đồng biến (tăng) trên K nếu với mọi \({x_1}\), \({x_2}\) thuộc K mà \({x_1}\) < \({x_2}\) thì f(\({x_1}\)) < f(\({x_2}\)). Hàm số y = f(x) gọi là nghịch biến (giảm) trên K nếu với mọi \({x_1}\), \({x_2}\) thuộc K mà \({x_1}\) < \({x_2}\) thì f(\({x_1}\)) > f(\({x_2}\)).
b) Dựa vào công thức đạo hàm để tìm f '(x)
c) So sánh và rút ra nhận xét
Lời giải chi tiết:
a) Hàm số đồng biến trên khoảng (0; \( + \infty \))
Hàm số nghịch biến trên khoảng (\( - \infty \); 0)
b) f '(x) = (\({x^2}\))' = 2x
Ta có:
f '(x) > 0 \( \Leftrightarrow 2x > 0 \Leftrightarrow x > 0\)
f '(x) < 0 \( \Leftrightarrow 2x < 0 \Leftrightarrow x < 0\)
c) Nhận xét:
f’(x) > 0 trên K thì y = f(x) đồng biến trên K
f’(x) < 0 trên K thì y = f(x) nghịch biến trên K
Trả lời câu hỏi Thực hành 2 trang 9 SGK Toán 12 Chân trời sáng tạo
Xét tính đơn điệu của các hàm số sau:
a) \(f(x) = {x^3} - 6{x^2} + 9x\)
b) \(g(x) = \frac{1}{x}\)
Phương pháp giải:
Xác định tập xác định D, đạo hàm f’(x) và lập bảng biến thiên
Lời giải chi tiết:
a) \(f(x) = {x^3} - 6{x^2} + 9x\)
Tập xác định: \(D = \mathbb{R}\)
\(f'(x) = 3{x^2} - 12x + 9\)
\(f'(x) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 1\end{array} \right.\)
Bảng biến thiên:

Vậy hàm số \(f(x) = {x^3} - 6{x^2} + 9x\) đồng biến trên các khoảng (\( - \infty \); 1) và (3; \( + \infty \)), nghịch biến trên khoảng (1; 3)
b) \(g(x) = \frac{1}{x}\)
Tập xác định: \(D = \mathbb{R}\backslash \{ 0\} \)
\(g'(x) = - \frac{1}{{{x^2}}}\)
Vì \({x^2} > 0\forall x \in \mathbb{R}\backslash \{ 0\} \) nên \(g'(x) < 0\forall x \in \mathbb{R}\backslash \{ 0\} \)
Bảng biến thiên:

Vậy hàm số \(g(x) = \frac{1}{x}\) nghịch biến trên các khoảng (\( - \infty \); 0) và (0; \( + \infty \))
Trả lời câu hỏi Thực hành 3 trang 9 SGK Toán 12 Chân trời sáng tạo
Chứng minh rằng hàm số \(f\left( x \right) = 3x - sinx\) đồng biến trên \(\mathbb{R}\)
Phương pháp giải:
Tìm tập xác định D, đạo hàm f’(x) và dựa vào tính chất \( - 1 \le \cos x \le 1\)
Lời giải chi tiết:
Tập xác định: \(D = \mathbb{R}\)
\(f'(x) = 3 - \cos x\)
Ta có: \( - 1 \le \cos x \le 1\) nên \(2 \le 3 - \cos x \le 4\). Vì vậy \(f'(x) > 0\forall x \in \mathbb{R}\)
=> Hàm số \(f\left( x \right){\rm{ }} = {\rm{ }}3x{\rm{ }} - {\rm{ }}sinx\) đồng biến trên \(\mathbb{R}\)
Trả lời câu hỏi Vận dụng 1 trang 9 SGK Toán 12 Chân trời sáng tạo
Hãy trả lời câu hỏi trong Khởi động (trang 6) bằng cách xét dấu đạo hàm của hàm số \(h\left( t \right) = 6{t^3} - 81{t^2} + 324t\) với \(0 \le t \le 8\)
Trong 8 phút đầu kể từ khi xuất phát, độ cao h (tính bằng mét) của khinh khí cầu vào thời điểm t phút được cho bởi công thức \(h\left( t \right) = 6{t^3} - 81{t^2} + 324t\). Đồ thị của hàm số h(t) được biểu diễn trong hình bên. Trong các khoảng thời gian nào khinh khí cầu tăng dần độ cao, giảm dần độ cao? Độ cao của khinh khí cầu vào các thời điểm 3 phút và 6 phút sau khi xuất phát có gì đặc biệt?

Phương pháp giải:
Xét dấu h’(x) để tìm ra các khoảng đồng biến, nghịch biến
Lời giải chi tiết:
\(h\left( t \right) = 6{t^3} - 81{t^2} + 324t\)
Tập xác định: \(D = \mathbb{R}\)
\(h'(t) = 18{t^2} - 162t + 324\)
\(h'(t) = 0 \Leftrightarrow \left[ \begin{array}{l}t = 3\\t = 6\end{array} \right.\)
Bảng biến thiên:

Trong thời gian từ lúc xuất phát đến thời điểm 3 phút, độ cao của khinh khí cầu tăng dần từ 0m lên 405m
Độ cao của khinh khí cầu tăng dần từ 0m lên 405m trong thời gian từ lúc xuất phát đến thời điểm 3 phút, từ 324m lên 480m trong thời gian từ 6 phút đến 8 phút
Độ cao của khinh khí cầu giảm dần từ 405m xuống 324m trong thời gian từ 3 phút đến 6 phút
Mục 1 của SGK Toán 12 tập 1 chương trình Chân trời sáng tạo tập trung vào việc ôn tập và hệ thống hóa kiến thức về hàm số và đồ thị. Đây là nền tảng quan trọng để các em tiếp cận các kiến thức nâng cao hơn trong chương trình học. Việc nắm vững các khái niệm, định lý và kỹ năng giải bài tập trong mục này là vô cùng cần thiết.
Dưới đây là lời giải chi tiết cho từng bài tập trong mục 1 trang 6, 7, 8 SGK Toán 12 tập 1 Chân trời sáng tạo:
Đề bài: (Đề bài cụ thể của bài 1)
Lời giải: (Lời giải chi tiết, bao gồm các bước giải, giải thích rõ ràng và sử dụng các công thức liên quan). Ví dụ: Để giải bài này, ta cần sử dụng định nghĩa về hàm số và tập xác định. Ta xác định tập xác định của hàm số bằng cách tìm các giá trị của x sao cho biểu thức trong hàm số có nghĩa. ...
Đề bài: (Đề bài cụ thể của bài 2)
Lời giải: (Lời giải chi tiết, bao gồm các bước giải, giải thích rõ ràng và sử dụng các công thức liên quan). Ví dụ: Để vẽ đồ thị hàm số, ta cần xác định các điểm đặc biệt như điểm cực trị, điểm uốn và tiệm cận. Sau đó, ta vẽ đồ thị bằng cách nối các điểm này lại với nhau. ...
Đề bài: (Đề bài cụ thể của bài 3)
Lời giải: (Lời giải chi tiết, bao gồm các bước giải, giải thích rõ ràng và sử dụng các công thức liên quan). Ví dụ: Bài toán này yêu cầu chúng ta áp dụng kiến thức về ứng dụng của hàm số để giải quyết một bài toán thực tế. Ta cần phân tích bài toán, xây dựng mô hình toán học và giải phương trình để tìm ra đáp án. ...
Ngoài SGK, các em có thể tham khảo thêm các tài liệu sau để học tốt môn Toán 12:
Tusach.vn hy vọng rằng với lời giải chi tiết và hướng dẫn giải bài tập trên, các em sẽ học tốt môn Toán 12 và đạt kết quả cao trong các kỳ thi sắp tới. Chúc các em thành công!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập