1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài tập 6 trang 20 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 6 trang 20 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 6 trang 20 SGK Toán 12 tập 2 - Chân trời sáng tạo

Bài tập 6 trang 20 SGK Toán 12 tập 2 thuộc chương trình Toán 12 Chân trời sáng tạo, tập trung vào việc ôn tập về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.

Tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

Tốc độ (v{rm{ }}left( {{rm{m/s}}} right)) của một thang máy di chuyển từ tầng 1 lên tầng cao nhất theo thời gian (t) (giây) được cho bởi công thức (vleft( t right) = left{ {begin{array}{*{20}{c}}t&{left( {0 le t le 2} right)}\2&{left( {2 < t le 20} right)}\{12 - 0,5t}&{left( {20 < t le 24} right)}end{array}} right.). Tính quãng đường chuyển động và tốc độ trung bình của thang máy.

Đề bài

Tốc độ \(v{\rm{ }}\left( {{\rm{m/s}}} \right)\) của một thang máy di chuyển từ tầng 1 lên tầng cao nhất theo thời gian \(t\) (giây) được cho bởi công thức \(v\left( t \right) = \left\{ {\begin{array}{*{20}{c}}t&{\left( {0 \le t \le 2} \right)}\\2&{\left( {2 < t \le 20} \right)}\\{12 - 0,5t}&{\left( {20 < t \le 24} \right)}\end{array}} \right.\). Tính quãng đường chuyển động và tốc độ trung bình của thang máy.

Phương pháp giải - Xem chi tiếtGiải bài tập 6 trang 20 SGK Toán 12 tập 2 - Chân trời sáng tạo 1

Gọi \(s\left( t \right)\) là quãng đường thang máy di chuyển được đến thời gian \(t\) (giây).

Quãng đường thang máy di chuyển từ tầng 1 lên tầng cao nhất là \(s = s\left( {24} \right) - s\left( 0 \right) = \int\limits_0^{24} {v\left( t \right)dt} \).

Sử dụng tính chất \(\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^c {f\left( x \right)dx} + \int\limits_c^b {f\left( x \right)dx} \) để tính tích phân \(\int\limits_0^{24} {v\left( t \right)dt} \).

Vận tốc trung bình của thang máy khi di chuyển từ tầng 1 lên tầng cao nhất là \({v_{tb}} = \frac{s}{t}\).

Lời giải chi tiết

Gọi \(s\left( t \right)\) là quãng đường thang máy di chuyển được đến thời gian \(t\) (giây).

Quãng đường thang máy di chuyển từ tầng 1 lên tầng cao nhất là \(s = s\left( {20} \right) - s\left( 0 \right) = \int\limits_0^{20} {v\left( t \right)dt} = \int\limits_0^2 {v\left( t \right)dt} + \int\limits_2^{20} {v\left( t \right)dt} + \int\limits_{20}^{24} {v\left( t \right)dt} \)

\( = \int\limits_0^2 {tdt} + \int\limits_2^{20} {2dt} + \int\limits_{20}^{24} {\left( {12 - 0,5t} \right)dt} = \left. {\left( {\frac{{{t^2}}}{2}} \right)} \right|_0^2 + 2\left. {\left( t \right)} \right|_2^{20} + \left. {\left( {12t - \frac{{0,5{t^2}}}{2}} \right)} \right|_{20}^{24}\)

\( = \left( {2 - 0} \right) + 2\left( {20 - 2} \right) + \left( {144 - 140} \right) = 42{\rm{ }}\left( {\rm{m}} \right)\).

Vận tốc trung bình của thang máy là \({v_{tb}} = \frac{s}{t} = \frac{{42}}{{24}} = 1,75\left( {{\rm{m/s}}} \right)\)

Giải bài tập 6 trang 20 SGK Toán 12 tập 2 - Chân trời sáng tạo: Hướng dẫn chi tiết và dễ hiểu

Bài tập 6 trang 20 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 12, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Dưới đây là hướng dẫn chi tiết cách giải bài tập này, cùng với các lưu ý quan trọng để đạt điểm cao.

Nội dung bài tập 6 trang 20 SGK Toán 12 tập 2 - Chân trời sáng tạo

Bài tập 6 thường yêu cầu học sinh thực hiện các thao tác sau:

  • Tính đạo hàm của hàm số.
  • Tìm cực trị của hàm số.
  • Khảo sát sự biến thiên của hàm số.
  • Vẽ đồ thị hàm số.

Phương pháp giải bài tập 6 trang 20 SGK Toán 12 tập 2 - Chân trời sáng tạo

Để giải bài tập này một cách hiệu quả, bạn cần nắm vững các kiến thức sau:

  1. Kiến thức về đạo hàm: Nắm vững các công thức tính đạo hàm của các hàm số cơ bản, quy tắc tính đạo hàm của tổng, hiệu, tích, thương và hàm hợp.
  2. Kiến thức về cực trị: Hiểu rõ điều kiện để hàm số đạt cực đại, cực tiểu. Biết cách tìm điểm cực trị của hàm số.
  3. Kiến thức về khảo sát hàm số: Biết cách xác định khoảng đồng biến, nghịch biến, điểm uốn của hàm số.

Ví dụ minh họa giải bài tập 6 trang 20 SGK Toán 12 tập 2 - Chân trời sáng tạo

Bài toán: Cho hàm số y = x3 - 3x2 + 2. Hãy khảo sát sự biến thiên và vẽ đồ thị của hàm số.

Giải:

  1. Tính đạo hàm: y' = 3x2 - 6x
  2. Tìm cực trị: Giải phương trình y' = 0, ta được x = 0 và x = 2.
  3. Khảo sát sự biến thiên:
    • Khi x < 0, y' > 0, hàm số đồng biến.
    • Khi 0 < x < 2, y' < 0, hàm số nghịch biến.
    • Khi x > 2, y' > 0, hàm số đồng biến.
  4. Vẽ đồ thị: Dựa vào kết quả khảo sát, ta có thể vẽ được đồ thị của hàm số.

Lưu ý khi giải bài tập 6 trang 20 SGK Toán 12 tập 2 - Chân trời sáng tạo

  • Đọc kỹ đề bài và xác định rõ yêu cầu của bài toán.
  • Sử dụng các công thức và quy tắc đạo hàm một cách chính xác.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Luyện tập thường xuyên để nắm vững kiến thức và kỹ năng.

Tusach.vn – Nguồn tài liệu học tập Toán 12 uy tín

Tusach.vn là một website cung cấp tài liệu học tập Toán 12 uy tín, với đầy đủ các bài giải, đáp án, và hướng dẫn chi tiết. Chúng tôi luôn cập nhật những thông tin mới nhất và cung cấp cho học sinh những tài liệu chất lượng nhất. Hãy truy cập Tusach.vn để được hỗ trợ tốt nhất trong quá trình học tập!

Chủ đềLiên kết
Giải bài tập Toán 12 tập 2https://tusach.vn/toan-12-tap-2
Đạo hàm và ứng dụnghttps://tusach.vn/dao-ham-va-ung-dung

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN