Bài tập 6 trang 20 SGK Toán 12 tập 2 thuộc chương trình Toán 12 Chân trời sáng tạo, tập trung vào việc ôn tập về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.
Tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Tốc độ (v{rm{ }}left( {{rm{m/s}}} right)) của một thang máy di chuyển từ tầng 1 lên tầng cao nhất theo thời gian (t) (giây) được cho bởi công thức (vleft( t right) = left{ {begin{array}{*{20}{c}}t&{left( {0 le t le 2} right)}\2&{left( {2 < t le 20} right)}\{12 - 0,5t}&{left( {20 < t le 24} right)}end{array}} right.). Tính quãng đường chuyển động và tốc độ trung bình của thang máy.
Đề bài
Tốc độ \(v{\rm{ }}\left( {{\rm{m/s}}} \right)\) của một thang máy di chuyển từ tầng 1 lên tầng cao nhất theo thời gian \(t\) (giây) được cho bởi công thức \(v\left( t \right) = \left\{ {\begin{array}{*{20}{c}}t&{\left( {0 \le t \le 2} \right)}\\2&{\left( {2 < t \le 20} \right)}\\{12 - 0,5t}&{\left( {20 < t \le 24} \right)}\end{array}} \right.\). Tính quãng đường chuyển động và tốc độ trung bình của thang máy.
Phương pháp giải - Xem chi tiết
Gọi \(s\left( t \right)\) là quãng đường thang máy di chuyển được đến thời gian \(t\) (giây).
Quãng đường thang máy di chuyển từ tầng 1 lên tầng cao nhất là \(s = s\left( {24} \right) - s\left( 0 \right) = \int\limits_0^{24} {v\left( t \right)dt} \).
Sử dụng tính chất \(\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^c {f\left( x \right)dx} + \int\limits_c^b {f\left( x \right)dx} \) để tính tích phân \(\int\limits_0^{24} {v\left( t \right)dt} \).
Vận tốc trung bình của thang máy khi di chuyển từ tầng 1 lên tầng cao nhất là \({v_{tb}} = \frac{s}{t}\).
Lời giải chi tiết
Gọi \(s\left( t \right)\) là quãng đường thang máy di chuyển được đến thời gian \(t\) (giây).
Quãng đường thang máy di chuyển từ tầng 1 lên tầng cao nhất là \(s = s\left( {20} \right) - s\left( 0 \right) = \int\limits_0^{20} {v\left( t \right)dt} = \int\limits_0^2 {v\left( t \right)dt} + \int\limits_2^{20} {v\left( t \right)dt} + \int\limits_{20}^{24} {v\left( t \right)dt} \)
\( = \int\limits_0^2 {tdt} + \int\limits_2^{20} {2dt} + \int\limits_{20}^{24} {\left( {12 - 0,5t} \right)dt} = \left. {\left( {\frac{{{t^2}}}{2}} \right)} \right|_0^2 + 2\left. {\left( t \right)} \right|_2^{20} + \left. {\left( {12t - \frac{{0,5{t^2}}}{2}} \right)} \right|_{20}^{24}\)
\( = \left( {2 - 0} \right) + 2\left( {20 - 2} \right) + \left( {144 - 140} \right) = 42{\rm{ }}\left( {\rm{m}} \right)\).
Vận tốc trung bình của thang máy là \({v_{tb}} = \frac{s}{t} = \frac{{42}}{{24}} = 1,75\left( {{\rm{m/s}}} \right)\)
Bài tập 6 trang 20 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 12, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Dưới đây là hướng dẫn chi tiết cách giải bài tập này, cùng với các lưu ý quan trọng để đạt điểm cao.
Bài tập 6 thường yêu cầu học sinh thực hiện các thao tác sau:
Để giải bài tập này một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
Bài toán: Cho hàm số y = x3 - 3x2 + 2. Hãy khảo sát sự biến thiên và vẽ đồ thị của hàm số.
Giải:
Tusach.vn là một website cung cấp tài liệu học tập Toán 12 uy tín, với đầy đủ các bài giải, đáp án, và hướng dẫn chi tiết. Chúng tôi luôn cập nhật những thông tin mới nhất và cung cấp cho học sinh những tài liệu chất lượng nhất. Hãy truy cập Tusach.vn để được hỗ trợ tốt nhất trong quá trình học tập!
| Chủ đề | Liên kết |
|---|---|
| Giải bài tập Toán 12 tập 2 | https://tusach.vn/toan-12-tap-2 |
| Đạo hàm và ứng dụng | https://tusach.vn/dao-ham-va-ung-dung |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập