1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài tập 12 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 12 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải Bài Tập 12 Trang 67 Toán 12 Tập 2 - Chân Trời Sáng Tạo

Chào mừng bạn đến với lời giải chi tiết bài tập 12 trang 67 SGK Toán 12 tập 2, thuộc chương trình Chân trời sáng tạo. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp bạn hiểu sâu sắc kiến thức và tự tin làm bài tập.

tusach.vn luôn đồng hành cùng bạn trên con đường chinh phục môn Toán.

Cho bốn điểm \(A\left( {1;0;0} \right)\), \(B\left( {0;1;0} \right)\), \(C\left( {0;0;1} \right)\), \(D\left( { - 2;1; - 1} \right)\). a) Chứng minh \(A\), \(B\), \(C\), \(D\) là bốn đỉnh của một hình chóp. b) Tìm góc giữa hai đường thẳng \(AB\) và \(CD\). c) Tính độ dài đường cao của hình chóp \(A.BCD\).

Đề bài

Cho bốn điểm \(A\left( {1;0;0} \right)\), \(B\left( {0;1;0} \right)\), \(C\left( {0;0;1} \right)\), \(D\left( { - 2;1; - 1} \right)\).

a) Chứng minh \(A\), \(B\), \(C\), \(D\) là bốn đỉnh của một hình chóp.

b) Tìm góc giữa hai đường thẳng \(AB\) và \(CD\).

c) Tính độ dài đường cao của hình chóp \(A.BCD\).

Phương pháp giải - Xem chi tiếtGiải bài tập 12 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo 1

a) Để chứng minh \(A\), \(B\), \(C\), \(D\) là bốn đỉnh của một hình chóp, viết phương trình mặt phẳng \(\left( {BCD} \right)\), rồi chỉ ra điểm \(A\) không nằm trên mặt phẳng \(\left( {BCD} \right)\).

b) Xác định toạ độ của các vectơ chỉ phương \(\overrightarrow {AB} \) , \(\overrightarrow {CD} \) lần lượt của các đường thẳng \(AB\) và \(CD\), sau đó sử dụng công thức \(\cos \left( {AB,CD} \right) = \left| {\cos \left( {\overrightarrow {AB} ,\overrightarrow {CD} } \right)} \right|\).

c) Độ dài đường cao của hình chóp \(A.BCD\) chính là khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {BCD} \right)\), sau đó sử dụng công thức tính khoảng cách từ một điểm đến mặt phẳng trong không gian.

Lời giải chi tiết

Giải bài tập 12 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo 2

a) Mặt phẳng \(\left( {BCD} \right)\) đi qua \(B\left( {0;1;0} \right)\), \(C\left( {0;0;1} \right)\), \(D\left( { - 2;1; - 1} \right)\) nên nó có một cặp vectơ chỉ phương là \(\overrightarrow {BC} = \left( {0; - 1;1} \right)\) và \(\overrightarrow {BD} = \left( { - 2;0; - 1} \right)\). Vậy một vectơ pháp tuyến của \(\left( {BCD} \right)\) là \(\vec n = \left[ {\overrightarrow {BC} ,\overrightarrow {BD} } \right] = \left( {1; - 2; - 2} \right)\). Suy ra phương trình mặt phẳng \(\left( {BCD} \right)\) là \(1\left( {x - 0} \right) - 2\left( {y - 0} \right) - 2\left( {z - 1} \right) = 0\), hay \(x - 2y - 2z + 2 = 0\).

Thay toạ độ điểm \(A\) vào phương trình mặt phẳng \(\left( {BCD} \right)\), ta thấy không thoả mãn, do \(1 - 2.0 - 2.0 + 2 = 3 \ne 0\).

Vậy \(A\) không thuộc \(\left( {BCD} \right)\), suy ra \(A\), \(B\), \(C\), \(D\) không đồng phẳng. Điều này cũng có nghĩa 4 điểm trên là 4 đỉnh của một hình chóp.

b) Ta có \(\overrightarrow {AB} = \left( { - 1;1;0} \right)\) và \(\overrightarrow {CD} = \left( { - 2;1; - 2} \right)\) lần lượt là các vectơ chỉ phương của các đường thẳng \(AB\) và \(CD\).

Ta có \(\cos \left( {AB,CD} \right) = \left| {\cos \left( {\overrightarrow {AB} ,\overrightarrow {CD} } \right)} \right| = \frac{{\left| {\left( { - 1} \right).\left( { - 2} \right) + 1.1 + 0.\left( { - 2} \right)} \right|}}{{\sqrt {{{\left( { - 1} \right)}^2} + {1^2} + {0^2}} .\sqrt {{{\left( { - 2} \right)}^2} + {1^2} + {{\left( { - 2} \right)}^2}} }} = \frac{{\sqrt 2 }}{2}\)

Suy ra \(\left( {AB,CD} \right) = {45^o}\).

c) Ta có độ dài đường cao của hình chóp \(A.BCD\) chính là khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {BCD} \right)\). Khoảng cách đó bằng:

\(d\left( {A,\left( {BCD} \right)} \right) = \frac{{\left| {1 - 2.0 - 2.0 + 2} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = 1\)

Giải Bài Tập 12 Trang 67 Toán 12 Tập 2 - Chân Trời Sáng Tạo: Hướng Dẫn Chi Tiết

Bài tập 12 trang 67 SGK Toán 12 tập 2 Chân trời sáng tạo là một bài tập quan trọng, thường xuất hiện trong các đề thi. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Dưới đây là hướng dẫn chi tiết cách giải bài tập này:

Nội dung Bài Tập 12 Trang 67

Bài tập 12 thường liên quan đến việc tìm đạo hàm của hàm số, xác định các điểm cực trị, và khảo sát hàm số. Cụ thể, bài tập có thể yêu cầu:

  • Tính đạo hàm cấp một và đạo hàm cấp hai của hàm số.
  • Tìm các điểm cực trị của hàm số.
  • Xác định khoảng đồng biến, nghịch biến của hàm số.
  • Vẽ đồ thị hàm số.

Phương Pháp Giải Bài Tập 12 Trang 67

Để giải bài tập 12 trang 67 SGK Toán 12 tập 2 Chân trời sáng tạo một cách hiệu quả, bạn cần nắm vững các bước sau:

  1. Bước 1: Tính đạo hàm cấp một (y') của hàm số. Sử dụng các quy tắc đạo hàm cơ bản như quy tắc lũy thừa, quy tắc tích, quy tắc thương, và quy tắc hàm hợp.
  2. Bước 2: Tìm các điểm cực trị. Giải phương trình y' = 0 để tìm các điểm nghi ngờ là cực trị. Sau đó, xét dấu đạo hàm cấp một để xác định loại cực trị (cực đại hoặc cực tiểu).
  3. Bước 3: Tính đạo hàm cấp hai (y'') của hàm số. Sử dụng đạo hàm cấp một để tính đạo hàm cấp hai.
  4. Bước 4: Khảo sát hàm số. Dựa vào đạo hàm cấp một và đạo hàm cấp hai, xác định khoảng đồng biến, nghịch biến, điểm uốn, và vẽ đồ thị hàm số.

Ví dụ Giải Bài Tập 12 Trang 67 (Giả định)

Bài tập: Cho hàm số y = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.

Giải:

  1. Tính đạo hàm cấp một: y' = 3x2 - 6x
  2. Tìm các điểm cực trị: Giải phương trình y' = 0, ta được 3x2 - 6x = 0 => x = 0 hoặc x = 2
  3. Xác định loại cực trị:
    • Với x < 0: y' > 0 => Hàm số đồng biến
    • Với 0 < x < 2: y' < 0 => Hàm số nghịch biến
    • Với x > 2: y' > 0 => Hàm số đồng biến
    Vậy, hàm số có cực đại tại x = 0 và cực tiểu tại x = 2.

Lưu Ý Khi Giải Bài Tập

Khi giải bài tập 12 trang 67, bạn cần lưu ý những điều sau:

  • Nắm vững các quy tắc đạo hàm cơ bản.
  • Kiểm tra kỹ kết quả tính toán.
  • Sử dụng máy tính bỏ túi để hỗ trợ tính toán.
  • Thực hành giải nhiều bài tập khác nhau để nâng cao kỹ năng.

Tài Liệu Tham Khảo

Ngoài SGK Toán 12 tập 2 Chân trời sáng tạo, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách bài tập Toán 12
  • Các trang web học Toán trực tuyến
  • Các video hướng dẫn giải bài tập Toán 12

Chúc bạn học tốt và đạt kết quả cao trong môn Toán!

Nếu bạn có bất kỳ câu hỏi nào, đừng ngần ngại liên hệ với tusach.vn để được hỗ trợ.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN