Chào mừng bạn đến với lời giải chi tiết bài tập 11 trang 60 SGK Toán 12 tập 2, thuộc chương trình Chân trời sáng tạo. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp bạn hiểu sâu sắc kiến thức và tự tin làm bài tập.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất cho học sinh.
Trên một cánh đồng điện mặt trời, người ta đã thiết lập sẵn một hệ toạ độ \(Oxyz\). Hai tấm pin năng lượng lần lượt nằm trong hai mặt phẳng \(\left( P \right):2x + 2z + 1 = 0\) và \(\left( {P'} \right):x + z + 7 = 0\). a) Tính góc giữa \(\left( P \right)\) và \(\left( {P'} \right)\). b) Tính góc hợp bởi \(\left( P \right)\) và \(\left( {P'} \right)\) với mặt đất \(\left( Q \right)\) có phương trình \(z = 0\).
Đề bài
Trên một cánh đồng điện mặt trời, người ta đã thiết lập sẵn một hệ toạ độ \(Oxyz\). Hai tấm pin năng lượng lần lượt nằm trong hai mặt phẳng \(\left( P \right):2x + 2z + 1 = 0\) và \(\left( {P'} \right):x + z + 7 = 0\).
a) Tính góc giữa \(\left( P \right)\) và \(\left( {P'} \right)\).
b) Tính góc hợp bởi \(\left( P \right)\) và \(\left( {P'} \right)\) với mặt đất \(\left( Q \right)\) có phương trình \(z = 0\).

Phương pháp giải - Xem chi tiết
a) Chỉ ra các vectơ pháp tuyến \(\vec n\) và \(\vec n'\) lần lượt của \(\left( P \right)\) và \(\left( {P'} \right)\), sau đó sử dụng công thức \(\cos \left( {\left( P \right),\left( {P'} \right)} \right) = \left| {\cos \left( {\vec n,\vec n'} \right)} \right|\).
b) Làm tương tự câu a.
Lời giải chi tiết
a) Một vectơ pháp tuyến của \(\left( P \right)\) là \(\vec n = \left( {2;0;2} \right)\).
Một vectơ pháp tuyến của \(\left( {P'} \right)\) là \(\vec n' = \left( {1;0;1} \right)\).
Ta có \(\cos \left( {\left( P \right),\left( {P'} \right)} \right) = \left| {\cos \left( {\vec n,\vec n'} \right)} \right| = \frac{{\left| {2.1 + 0.0 + 2.1} \right|}}{{\sqrt {{2^2} + {0^2} + {2^2}} .\sqrt {{1^2} + {0^2} + {1^2}} }} = 1.\)
Suy ra \(\left( {\left( P \right),\left( {P'} \right)} \right) = {0^o}\).
Cách khác: Do \(\frac{2}{1} = \frac{2}{1}\) nên \(\vec n\) và \(\vec n'\) là hai vectơ cùng phương. Suy ra \(\left( P \right)\parallel \left( {P'} \right)\). Từ đó \(\left( {\left( P \right),\left( {P'} \right)} \right) = {0^o}\).
b) Một vectơ pháp tuyến của mặt đất \(\left( Q \right)\) là \(\vec m = \left( {0;0;1} \right)\).
Ta có \(\cos \left( {\left( P \right),\left( Q \right)} \right) = \left| {\cos \left( {\vec n,\vec m} \right)} \right| = \frac{{\left| {2.0 + 0.0 + 2.1} \right|}}{{\sqrt {{2^2} + {0^2} + {2^2}} .\sqrt {{0^2} + {0^2} + {1^2}} }} = \frac{{\sqrt 2 }}{2}.\)
Suy ra \(\left( {\left( P \right),\left( Q \right)} \right) = {45^o}\). Chứng minh tương tự, ta có \(\left( {\left( {P'} \right),\left( Q \right)} \right) = {45^o}.\)
Bài tập 11 trang 60 SGK Toán 12 tập 2 Chân trời sáng tạo là một bài toán quan trọng trong chương trình học, đòi hỏi học sinh phải nắm vững kiến thức về đạo hàm và ứng dụng của đạo hàm để giải quyết. Dưới đây là hướng dẫn chi tiết từng bước để bạn có thể tự tin giải bài tập này.
Bài tập 11 yêu cầu chúng ta tìm đạo hàm của hàm số và xác định các điểm cực trị của hàm số đó. Để giải bài tập này, chúng ta cần thực hiện các bước sau:
Giả sử hàm số cần xét là f(x) = x3 - 3x2 + 2.
Khi giải bài tập về đạo hàm, bạn cần chú ý:
Bài tập 11 trang 60 SGK Toán 12 tập 2 Chân trời sáng tạo là một bài tập điển hình về ứng dụng của đạo hàm để tìm cực trị của hàm số. Bằng cách thực hiện các bước tính toán một cách cẩn thận và chính xác, bạn có thể dễ dàng giải quyết bài tập này và nâng cao kiến thức về đạo hàm.
Nếu bạn gặp khó khăn trong quá trình giải bài tập, đừng ngần ngại tham khảo thêm các tài liệu học tập khác hoặc tìm kiếm sự giúp đỡ từ giáo viên và bạn bè. Chúc bạn học tập tốt!
| Bước | Thực Hiện |
|---|---|
| 1 | Tính đạo hàm cấp một f'(x) |
| 2 | Tìm điểm dừng f'(x) = 0 |
| 3 | Xác định dấu của f'(x) |
| 4 | Tính đạo hàm cấp hai f''(x) |
| 5 | Xác định điểm cực trị dựa trên dấu của f''(x) |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập