1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài tập 15 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 15 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải bài tập 15 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo

Tusach.vn xin giới thiệu lời giải chi tiết bài tập 15 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo. Bài viết này sẽ giúp học sinh hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.

Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tối đa cho quá trình học tập của bạn.

Cho hai mặt phẳng \(\left( P \right):x - y - 6 = 0\) và \(\left( Q \right)\). Biết rằng điểm \(H\left( {2; - 1; - 2} \right)\) là hình chiếu vuông góc của gốc toạ độ \(O\left( {0;0;0} \right)\) xuống mặt phẳng \(\left( Q \right)\). Tính góc giữa mặt phẳng \(\left( P \right)\) và mặt phẳng \(\left( Q \right)\).

Đề bài

Cho hai mặt phẳng \(\left( P \right):x - y - 6 = 0\) và \(\left( Q \right)\). Biết rằng điểm \(H\left( {2; - 1; - 2} \right)\) là hình chiếu vuông góc của gốc toạ độ \(O\left( {0;0;0} \right)\) xuống mặt phẳng \(\left( Q \right)\). Tính góc giữa mặt phẳng \(\left( P \right)\) và mặt phẳng \(\left( Q \right)\).

Phương pháp giải - Xem chi tiếtGiải bài tập 15 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo 1

Do \(H\) là hình chiếu của \(O\) xuống mặt phẳng \(\left( Q \right)\) nên \(OH \bot \left( Q \right)\), suy ra \(\overrightarrow {OH} \) là một vectơ pháp tuyến của \(\left( Q \right)\). Xác định vectơ pháp tuyến \(\vec n\) của \(\left( P \right)\) và sử dụng công thức \(\cos \left( {\left( P \right),\left( Q \right)} \right) = \left| {\cos \left( {\overrightarrow {OH} ,\vec n} \right)} \right|\).

Lời giải chi tiết

Do \(H\left( {2; - 1; - 2} \right)\) là hình chiếu của \(O\) xuống mặt phẳng \(\left( Q \right)\) nên \(OH \bot \left( Q \right)\), suy ra \(\overrightarrow {OH} = \left( {2; - 1; - 2} \right)\) là một vectơ pháp tuyến của \(\left( Q \right)\).

Ta có \(\vec n = \left( {1; - 1;0} \right)\) là một vectơ pháp tuyến của \(\left( P \right)\).

Suy ra \(\cos \left( {\left( P \right),\left( Q \right)} \right) = \left| {\cos \left( {\overrightarrow {OH} ,\vec n} \right)} \right| = \frac{{\left| {2.1 + \left( { - 1} \right).\left( { - 1} \right) + \left( { - 2} \right).0} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {0^2}} }} = \frac{{\sqrt 2 }}{2}.\)

Vậy \(\left( {\left( P \right),\left( Q \right)} \right) = {45^o}\).

Giải bài tập 15 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo: Tổng quan và Phương pháp

Bài tập 15 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo thuộc chương trình học về Đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số, các quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể.

Nội dung chính của bài tập 15 trang 67

Bài tập 15 thường xoay quanh các dạng bài sau:

  • Tính đạo hàm của hàm số tại một điểm.
  • Tìm đạo hàm của hàm số.
  • Ứng dụng đạo hàm để xét tính đơn điệu của hàm số.
  • Ứng dụng đạo hàm để tìm cực trị của hàm số.

Phương pháp giải bài tập 15 trang 67

Để giải quyết hiệu quả bài tập 15, bạn cần nắm vững các kiến thức và kỹ năng sau:

  1. Nắm vững các quy tắc tính đạo hàm: Quy tắc đạo hàm của tổng, hiệu, tích, thương, hàm hợp, và các hàm số cơ bản (hàm số mũ, hàm số logarit, hàm lượng giác).
  2. Biết cách áp dụng các công thức đạo hàm: Sử dụng đúng công thức đạo hàm tương ứng với từng loại hàm số.
  3. Phân tích bài toán: Xác định rõ yêu cầu của bài toán, các dữ kiện đã cho, và các kiến thức cần sử dụng.
  4. Thực hiện các phép tính đạo hàm một cách chính xác: Tránh sai sót trong quá trình tính toán.
  5. Kiểm tra lại kết quả: Đảm bảo kết quả cuối cùng là hợp lý và phù hợp với yêu cầu của bài toán.

Lời giải chi tiết bài tập 15 trang 67 (Ví dụ)

Bài tập: (Giả sử đây là một bài tập mẫu) Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.

Lời giải:

f'(x) = d/dx (x3) + d/dx (2x2) - d/dx (5x) + d/dx (1)

f'(x) = 3x2 + 4x - 5 + 0

f'(x) = 3x2 + 4x - 5

Mẹo giải nhanh và tránh sai lầm

  • Sử dụng bảng đạo hàm: Luôn có sẵn bảng đạo hàm các hàm số cơ bản để tra cứu nhanh chóng.
  • Chú ý đến dấu: Đặc biệt cẩn thận với dấu âm khi tính đạo hàm của các biểu thức phức tạp.
  • Kiểm tra lại các bước tính toán: Đảm bảo không bỏ sót bất kỳ bước nào trong quá trình tính đạo hàm.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng và làm quen với các dạng bài tập khác nhau.

Tài liệu tham khảo hữu ích

Ngoài SGK Toán 12 tập 2 - Chân trời sáng tạo, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách bài tập Toán 12
  • Các trang web học Toán trực tuyến
  • Các video hướng dẫn giải bài tập Toán 12 trên YouTube

Kết luận

Bài tập 15 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và các phương pháp giải được trình bày trong bài viết này, bạn sẽ tự tin hơn khi giải quyết các bài tập tương tự.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN