Tusach.vn xin giới thiệu lời giải chi tiết bài tập 15 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo. Bài viết này sẽ giúp học sinh hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tối đa cho quá trình học tập của bạn.
Cho hai mặt phẳng \(\left( P \right):x - y - 6 = 0\) và \(\left( Q \right)\). Biết rằng điểm \(H\left( {2; - 1; - 2} \right)\) là hình chiếu vuông góc của gốc toạ độ \(O\left( {0;0;0} \right)\) xuống mặt phẳng \(\left( Q \right)\). Tính góc giữa mặt phẳng \(\left( P \right)\) và mặt phẳng \(\left( Q \right)\).
Đề bài
Cho hai mặt phẳng \(\left( P \right):x - y - 6 = 0\) và \(\left( Q \right)\). Biết rằng điểm \(H\left( {2; - 1; - 2} \right)\) là hình chiếu vuông góc của gốc toạ độ \(O\left( {0;0;0} \right)\) xuống mặt phẳng \(\left( Q \right)\). Tính góc giữa mặt phẳng \(\left( P \right)\) và mặt phẳng \(\left( Q \right)\).
Phương pháp giải - Xem chi tiết
Do \(H\) là hình chiếu của \(O\) xuống mặt phẳng \(\left( Q \right)\) nên \(OH \bot \left( Q \right)\), suy ra \(\overrightarrow {OH} \) là một vectơ pháp tuyến của \(\left( Q \right)\). Xác định vectơ pháp tuyến \(\vec n\) của \(\left( P \right)\) và sử dụng công thức \(\cos \left( {\left( P \right),\left( Q \right)} \right) = \left| {\cos \left( {\overrightarrow {OH} ,\vec n} \right)} \right|\).
Lời giải chi tiết
Do \(H\left( {2; - 1; - 2} \right)\) là hình chiếu của \(O\) xuống mặt phẳng \(\left( Q \right)\) nên \(OH \bot \left( Q \right)\), suy ra \(\overrightarrow {OH} = \left( {2; - 1; - 2} \right)\) là một vectơ pháp tuyến của \(\left( Q \right)\).
Ta có \(\vec n = \left( {1; - 1;0} \right)\) là một vectơ pháp tuyến của \(\left( P \right)\).
Suy ra \(\cos \left( {\left( P \right),\left( Q \right)} \right) = \left| {\cos \left( {\overrightarrow {OH} ,\vec n} \right)} \right| = \frac{{\left| {2.1 + \left( { - 1} \right).\left( { - 1} \right) + \left( { - 2} \right).0} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {0^2}} }} = \frac{{\sqrt 2 }}{2}.\)
Vậy \(\left( {\left( P \right),\left( Q \right)} \right) = {45^o}\).
Bài tập 15 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo thuộc chương trình học về Đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số, các quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể.
Bài tập 15 thường xoay quanh các dạng bài sau:
Để giải quyết hiệu quả bài tập 15, bạn cần nắm vững các kiến thức và kỹ năng sau:
Bài tập: (Giả sử đây là một bài tập mẫu) Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
Lời giải:
f'(x) = d/dx (x3) + d/dx (2x2) - d/dx (5x) + d/dx (1)
f'(x) = 3x2 + 4x - 5 + 0
f'(x) = 3x2 + 4x - 5
Ngoài SGK Toán 12 tập 2 - Chân trời sáng tạo, bạn có thể tham khảo thêm các tài liệu sau:
Bài tập 15 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và các phương pháp giải được trình bày trong bài viết này, bạn sẽ tự tin hơn khi giải quyết các bài tập tương tự.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập