Chào mừng bạn đến với lời giải chi tiết bài tập 14 trang 29 SGK Toán 12 tập 2, chương trình Chân trời sáng tạo. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp bạn hiểu sâu sắc kiến thức và tự tin làm bài tập.
tusach.vn luôn đồng hành cùng bạn trên con đường chinh phục môn Toán.
Tính đạo hàm của (Fleft( x right) = ln left( {x + sqrt {{x^2} + 1} } right)). Từ đó suy ra nguyên hàm của (fleft( x right) = frac{1}{{sqrt {{x^2} + 1} }}).
Đề bài
Tính đạo hàm của \(F\left( x \right) = \ln \left( {x + \sqrt {{x^2} + 1} } \right)\). Từ đó suy ra nguyên hàm của \(f\left( x \right) = \frac{1}{{\sqrt {{x^2} + 1} }}\).
Phương pháp giải - Xem chi tiết
Tính đạo hàm của \(F\left( x \right) = \ln \left( {x + \sqrt {{x^2} + 1} } \right)\) và kết luận.
Lời giải chi tiết
Ta có \(F'\left( x \right) = \left[ {\ln \left( {x + \sqrt {{x^2} + 1} } \right)} \right]' = \frac{{\left( {x + \sqrt {{x^2} + 1} } \right)'}}{{x + \sqrt {{x^2} + 1} }} = \frac{{1 + \frac{{\left( {{x^2} + 1} \right)'}}{{2\sqrt {{x^2} + 1} }}}}{{x + \sqrt {{x^2} + 1} }} = \frac{{1 + \frac{x}{{\sqrt {{x^2} + 1} }}}}{{x + \sqrt {{x^2} + 1} }}\)
\( = \frac{{\sqrt {{x^2} + 1} + x}}{{\left( {x + \sqrt {{x^2} + 1} } \right).\sqrt {{x^2} + 1} }} = \frac{1}{{\sqrt {{x^2} + 1} }} = f\left( x \right)\)
Như vậy \(F\left( x \right) = \ln \left( {x + \sqrt {{x^2} + 1} } \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{\sqrt {{x^2} + 1} }}\).
Do đó \(\int {f\left( x \right)dx} = F\left( x \right) + C \Rightarrow \int {\frac{1}{{\sqrt {{x^2} + 1} }}dx} = \ln \left( {x + \sqrt {{x^2} + 1} } \right) + C\)
Bài tập 14 trang 29 SGK Toán 12 tập 2 chương trình Chân trời sáng tạo là một bài tập quan trọng, thường xuất hiện trong các đề thi. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Dưới đây là hướng dẫn chi tiết cách giải bài tập này:
Bài tập 14 thường liên quan đến việc tìm đạo hàm của hàm số, xét tính đơn điệu của hàm số, hoặc tìm cực trị của hàm số. Cụ thể, bài tập có thể yêu cầu:
Bài tập: Cho hàm số f(x) = x3 - 3x2 + 2. Tìm cực đại, cực tiểu của hàm số.
Giải:
Ngoài SGK Toán 12 tập 2 Chân trời sáng tạo, bạn có thể tham khảo thêm các tài liệu sau:
Kết luận: Bài tập 14 trang 29 SGK Toán 12 tập 2 Chân trời sáng tạo là một bài tập quan trọng, giúp bạn rèn luyện kỹ năng tính đạo hàm và ứng dụng đạo hàm vào giải quyết các bài toán thực tế. Hy vọng với hướng dẫn chi tiết này, bạn sẽ tự tin giải quyết bài tập một cách hiệu quả.
Chúc bạn học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập