Tusach.vn xin giới thiệu lời giải chi tiết bài tập mục 2 trang 21 SGK Toán 12 tập 1 Chân trời sáng tạo. Bài viết này cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp học sinh hiểu sâu kiến thức và tự tin làm bài tập.
Chúng tôi luôn cập nhật nhanh chóng và chính xác lời giải các bài tập trong SGK Toán 12 tập 1 Chân trời sáng tạo.
Đường tiệm cận ngang
Trả lời câu hỏi Thực hành 2 trang 21 SGK Toán 12 Chân trời sáng tạo
Tìm tiệm cận ngang của đồ thị các hàm số sau:
a) \(f(x) = \frac{{x - 1}}{{4x + 1}}\)
b) \(g(x) = \frac{{\sqrt x }}{{\sqrt x + 2}}\)
Phương pháp giải:
Đường thẳng y = m được gọi là một đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu \(\mathop {\lim }\limits_{x \to - \infty } f(x) = m\) hoặc \(\mathop {\lim }\limits_{x \to + \infty } f(x) = m\)
Lời giải chi tiết:
a) Xét \(f(x) = \frac{{x - 1}}{{4x + 1}}\)
Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - \frac{1}{4}} \right\}\)
Ta có: \(\mathop {\lim }\limits_{x \to + \infty } f(x) = \mathop {\lim }\limits_{x \to + \infty } \frac{{x - 1}}{{4x + 1}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{1 - \frac{1}{x}}}{{4 + \frac{1}{x}}} = \frac{1}{4}\); \(\mathop {\lim }\limits_{x \to - \infty } f(x) = \mathop {\lim }\limits_{x \to - \infty } \frac{{x - 1}}{{4x + 1}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{1 - \frac{1}{x}}}{{4 + \frac{1}{x}}} = \frac{1}{4}\)
Vậy đường thẳng \(y = \frac{1}{4}\) là tiệm cận ngang của đồ thị hàm số
b) Xét \(g(x) = \frac{{\sqrt x }}{{\sqrt x + 2}}\)
Tập xác định: \(D = [0; + \infty )\)
Ta có: \(\mathop {\lim }\limits_{x \to + \infty } g(x) = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt x }}{{\sqrt x + 2}} = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{1 + \frac{2}{{\sqrt x }}}} = 1\)
Vậy đường thẳng \(y = 1\) là tiệm cận ngang của đồ thị hàm số
Trả lời câu hỏi Khám phá 2 trang 21 SGK Toán 12 Chân trời sáng tạo
Cho hàm số \(y = \frac{{x + 1}}{x}\) có đồ thị như Hình 4.
a) Tìm \(\mathop {\lim }\limits_{x \to + \infty } = \frac{{x + 1}}{x},\mathop {\lim }\limits_{x \to - \infty } = \frac{{x + 1}}{x}\)
b) Đường thẳng vuông góc với trục Ox tại điểm x cắt đồ thị hàm số tại điểm M và cắt đường thẳng y = 1 tại điểm N (Hình 4). Tính MN theo x và nhận xét về MN khi \(x \to + \infty \) hoặc \(x \to - \infty \)

Phương pháp giải:
Quan sát đồ thị
Lời giải chi tiết:
a) Từ đồ thị ta thấy:
Khi \(x \to + \infty \)thì y tiến dần đến \(1\), vậy \(\mathop {\lim }\limits_{x \to + \infty } = \frac{{x + 1}}{x} = 1\)
Khi \(x \to - \infty \)thì y tiến dần đến \(1\), vậy \(\mathop {\lim }\limits_{x \to - \infty } = \frac{{x + 1}}{x} = 1\)
b) MN = y – 1 = \(\frac{{x + 1}}{x} - 1 = \frac{1}{x}\)
Khi \(x \to + \infty \) hoặc \(x \to - \infty \) thì MN tiến dần về 0
Trả lời câu hỏi Thực hành 2 trang 21 SGK Toán 12 Chân trời sáng tạo
Tìm tiệm cận ngang của đồ thị các hàm số sau:
a) \(f(x) = \frac{{x - 1}}{{4x + 1}}\)
b) \(g(x) = \frac{{\sqrt x }}{{\sqrt x + 2}}\)
Phương pháp giải:
Đường thẳng y = m được gọi là một đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu \(\mathop {\lim }\limits_{x \to - \infty } f(x) = m\) hoặc \(\mathop {\lim }\limits_{x \to + \infty } f(x) = m\)
Lời giải chi tiết:
a) Xét \(f(x) = \frac{{x - 1}}{{4x + 1}}\)
Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - \frac{1}{4}} \right\}\)
Ta có: \(\mathop {\lim }\limits_{x \to + \infty } f(x) = \mathop {\lim }\limits_{x \to + \infty } \frac{{x - 1}}{{4x + 1}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{1 - \frac{1}{x}}}{{4 + \frac{1}{x}}} = \frac{1}{4}\); \(\mathop {\lim }\limits_{x \to - \infty } f(x) = \mathop {\lim }\limits_{x \to - \infty } \frac{{x - 1}}{{4x + 1}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{1 - \frac{1}{x}}}{{4 + \frac{1}{x}}} = \frac{1}{4}\)
Vậy đường thẳng \(y = \frac{1}{4}\) là tiệm cận ngang của đồ thị hàm số
b) Xét \(g(x) = \frac{{\sqrt x }}{{\sqrt x + 2}}\)
Tập xác định: \(D = [0; + \infty )\)
Ta có: \(\mathop {\lim }\limits_{x \to + \infty } g(x) = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt x }}{{\sqrt x + 2}} = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{1 + \frac{2}{{\sqrt x }}}} = 1\)
Vậy đường thẳng \(y = 1\) là tiệm cận ngang của đồ thị hàm số
Trả lời câu hỏi Khám phá 2 trang 21 SGK Toán 12 Chân trời sáng tạo
Cho hàm số \(y = \frac{{x + 1}}{x}\) có đồ thị như Hình 4.
a) Tìm \(\mathop {\lim }\limits_{x \to + \infty } = \frac{{x + 1}}{x},\mathop {\lim }\limits_{x \to - \infty } = \frac{{x + 1}}{x}\)
b) Đường thẳng vuông góc với trục Ox tại điểm x cắt đồ thị hàm số tại điểm M và cắt đường thẳng y = 1 tại điểm N (Hình 4). Tính MN theo x và nhận xét về MN khi \(x \to + \infty \) hoặc \(x \to - \infty \)

Phương pháp giải:
Quan sát đồ thị
Lời giải chi tiết:
a) Từ đồ thị ta thấy:
Khi \(x \to + \infty \)thì y tiến dần đến \(1\), vậy \(\mathop {\lim }\limits_{x \to + \infty } = \frac{{x + 1}}{x} = 1\)
Khi \(x \to - \infty \)thì y tiến dần đến \(1\), vậy \(\mathop {\lim }\limits_{x \to - \infty } = \frac{{x + 1}}{x} = 1\)
b) MN = y – 1 = \(\frac{{x + 1}}{x} - 1 = \frac{1}{x}\)
Khi \(x \to + \infty \) hoặc \(x \to - \infty \) thì MN tiến dần về 0
Mục 2 trang 21 SGK Toán 12 tập 1 Chân trời sáng tạo thường tập trung vào các kiến thức về giới hạn hàm số. Đây là một phần quan trọng trong chương trình Toán 12, là nền tảng cho việc học các kiến thức về đạo hàm và tích phân. Việc nắm vững kiến thức và kỹ năng giải bài tập trong mục này là rất cần thiết để đạt kết quả tốt trong các kỳ thi.
Để giải tốt các bài tập trong mục này, học sinh cần:
Bài tập: Tính limx→2 (x2 - 4) / (x - 2)
Giải:
Ta có: limx→2 (x2 - 4) / (x - 2) = limx→2 (x - 2)(x + 2) / (x - 2) = limx→2 (x + 2) = 2 + 2 = 4
Tusach.vn là địa chỉ tin cậy cung cấp lời giải chi tiết, chính xác và dễ hiểu cho các bài tập SGK Toán 12 tập 1 Chân trời sáng tạo. Chúng tôi cam kết mang đến cho học sinh những trải nghiệm học tập tốt nhất, giúp các em tự tin chinh phục môn Toán.
Ngoài ra, Tusach.vn còn cung cấp nhiều tài liệu học tập hữu ích khác như:
Hãy truy cập Tusach.vn ngay hôm nay để khám phá thêm nhiều tài liệu học tập hữu ích và nâng cao kết quả học tập của bạn!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập