1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải mục 2 trang 70, 71, 72 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải mục 2 trang 70, 71, 72 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giải mục 2 trang 70, 71, 72 SGK Toán 12 tập 2 - Chân trời sáng tạo

Chào mừng các em học sinh đến với lời giải chi tiết mục 2 trang 70, 71, 72 SGK Toán 12 tập 2 chương trình Chân trời sáng tạo. Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp đáp án chính xác và dễ hiểu nhất.

Mục 2 này tập trung vào các kiến thức quan trọng về... (điền kiến thức chính của mục 2 vào đây). Việc nắm vững kiến thức này là nền tảng cho các bài học tiếp theo và các kỳ thi sắp tới.

Gieo đồng thời hai con xúc xắc cân đối và đồng chất. Gọi (A) là biến cố: “Xuất hiện hai mặt cùng số chấm”, (B) là biến cố: “Tổng số chấm của hai mặt xuất hiện bằng 8” và (C) là biến cố: “Xuất hiện ít nhất một mặt 6 chấm”. a) Tính (frac{{Pleft( {A cap B} right)}}{{Pleft( B right)}}) và (Pleft( {A|B} right)). b) Tính (frac{{Pleft( {C cap A} right)}}{{Pleft( A right)}}) và (Pleft( {C|A} right)).

HĐ2

    Trả lời câu hỏi Hoạt động 2 trang 70 SGK Toán 12 Chân trời sáng tạo

    Gieo đồng thời hai con xúc xắc cân đối và đồng chất. Gọi \(A\) là biến cố: “Xuất hiện hai mặt cùng số chấm”, \(B\) là biến cố: “Tổng số chấm của hai mặt xuất hiện bằng 8” và \(C\) là biến cố: “Xuất hiện ít nhất một mặt 6 chấm”.

    a) Tính \(\frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\) và \(P\left( {A|B} \right)\).

    b) Tính \(\frac{{P\left( {C \cap A} \right)}}{{P\left( A \right)}}\) và \(P\left( {C|A} \right)\).

    Phương pháp giải:

    Chỉ ra và tính lần lượt các xác suất \(P\left( {A \cap B} \right)\), \(P\left( {A|B} \right)\), \(P\left( {C \cap A} \right)\) , \(P\left( {C|A} \right)\) và tính các biểu thức đề bài yêu cầu.

    Lời giải chi tiết:

    a) Ta dễ dàng thấy các kết quả \(\left( {3;5} \right)\); \(\left( {4;4} \right)\); \(\left( {5;3} \right)\) là có lợi cho biến cố \(B\), suy ra \(P\left( B \right) = \frac{3}{{36}} = \frac{1}{{12}}\).

    Biến cố \(A \cap B\) là biến cố “Xuất hiện hai mặt cùng số chấm và tổng số chấm của hai mặt xuất hiện là 8”. Dễ dàng thấy \(\left( {4;4} \right)\) là kết quả có lợi duy nhất của biến cố này. Vậy \(P\left( {A \cap B} \right) = \frac{1}{{36}}\). Suy ra \(\frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{\frac{1}{{36}}}}{{\frac{1}{{12}}}} = \frac{1}{3}\).

    Khi biến cố \(B\) xảy ra, ta thấy chỉ có 1 kết quả có lợi cho biến cố \(A\). Như vậy \(P\left( {A|B} \right) = \frac{1}{3}\).

    b) Ta dễ dàng thấy các kết quả \(\left( {1;1} \right)\); \(\left( {2;2} \right)\); \(\left( {3;3} \right)\); \(\left( {4;4} \right)\); \(\left( {5;5} \right)\); \(\left( {6;6} \right)\) là các kết quả có lợi cho biến cố \(A\). Suy ra \(P\left( A \right) = \frac{6}{{36}} = \frac{1}{6}\).

    Biến cố \(C \cap A\) là biến cố “Xuất hiện hai mặt cùng số chấm và có ít nhất một mặt 6 chấm”. Dễ dàng thấy \(\left( {6;6} \right)\) là kết quả có lợi duy nhất của biến cố này. Vậy \(P\left( {C \cap A} \right) = \frac{1}{{36}}\). Suy ra \(\frac{{P\left( {C \cap A} \right)}}{{P\left( A \right)}} = \frac{{\frac{1}{{36}}}}{{\frac{1}{6}}} = \frac{1}{6}\).

    Khi biến cố \(A\) xảy ra, ta thấy chỉ có 1 kết quả có lợi cho biến cố \(C\). Như vậy \(P\left( {C|A} \right) = \frac{1}{6}\).

    VD2

      Trả lời câu hỏi Vận dụng 2 trang 72 SGK Toán 12 Chân trời sáng tạo

      Kết quả khảo sát những bệnh nhân bị tai nạn xe máy về mối liên hệ giữa việc đội mũ bảo hiểm và khả năng bị chấn thương ở vùng đầu cho thấy:

      - Tỉ lệ bệnh nhân bị chấn thương vùng đầu khi gặp tai nạn là 80%.

      - Tỉ lệ bệnh nhân đội mũ bảo hiểm đúng cách khi gặp tai nạn là 90%.

      - Tỉ lệ bệnh nhân đội mũ bảo hiểm đúng cách bị chấn thương vùng đầu là 18%.

      Hỏi theo kết quả điều tra trên, việc đội mũ bảo hiểm đúng cách sẽ giảm khả năng bị chấn thương vùng đầu bao nhiêu lần?

      Giải mục 2 trang 70, 71, 72 SGK Toán 12 tập 2 - Chân trời sáng tạo 2 1

      Phương pháp giải:

      Gọi \(A\) là biến cố “Bệnh nhân bị chấn thương vùng đầu”, \(B\) là biến cố “Bệnh nhân đội mũ bảo hiểm đúng cách”. Theo đề bài, xác định \(P\left( A \right)\), \(P\left( B \right)\), \(P\left( {AB} \right)\). Sử dụng biểu thức \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\) và kết luận.

      Lời giải chi tiết:

      Gọi \(A\) là biến cố “Bệnh nhân bị chấn thương vùng đầu”, \(B\) là biến cố “Bệnh nhân đội mũ bảo hiểm đúng cách”.

      Theo đề bài, ta có \(P\left( A \right) = 80\% = 0,8\); \(P\left( B \right) = 90\% = 0,9\).

      Biến cố \[AB\] là biến cố “Bệnh nhân đội mũ bảo hiểm đúng cách bị chấn thương vùng đầu”. Theo đề bài, ta có \(P\left( {AB} \right) = 18\% = 0,18\).

      Khi biến cố \(B\) xảy ra, tức là bệnh nhân đội mũ bảo hiểm đúng cách, ta cần tính xác suất để bệnh nhân bị chấn thương vùng đầu, tức là tính \(P\left( {A|B} \right)\).

      Ta có \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,18}}{{0,9}} = 0,2\).

      Như vậy, khi đội mũ bảo hiểm đúng cách thì tỉ lệ chấn thương vùng đầu sẽ là 0,2. Suy ra việc đội mũ bảo hiểm đúng cách sẽ làm giảm khả năng chấn thương vùng đầu đi \(\frac{{0,8}}{{0,2}} = 4\) lần.

      TH3

        Trả lời câu hỏi Thực hành 3 trang 72 SGK Toán 12 Chân trời sáng tạo

        Một nhóm 5 học sinh nam và 4 học sinh nữ tham gia lao động trên sân trường. Cô giáo chọn ngẫu nhiên đồng thời 2 bạn đi tưới cây. Tính xác suất để hai bạn được chọn có cùng giới tính, biết rằng có ít nhất 1 bạn nam được chọn.

        Giải mục 2 trang 70, 71, 72 SGK Toán 12 tập 2 - Chân trời sáng tạo 1 1

        Phương pháp giải:

        Gọi \(A\) là biến cố “Hai bạn được chọn cùng giới tính” và \(B\) là biến cố “Hai bạn được chọn có ít nhất một bạn nam”. Ta cần phải tính \(P\left( {A|B} \right)\). Tính \(P\left( {AB} \right)\) và \(P\left( B \right)\), rồi sử dụng công thức \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\) để tính \(P\left( {A|B} \right)\).

        Lời giải chi tiết:

        Gọi \(A\) là biến cố “Hai bạn được chọn cùng giới tính” và \(B\) là biến cố “Hai bạn được chọn có ít nhất một bạn nam”. Ta cần phải tính \(P\left( {A|B} \right)\).

        Số cách chọn hai bạn bất kì là \(C_9^2 = 36\).

        Số cách chọn hai bạn nam là \(C_5^2 = 10\).

        Số cách chọn hai bạn nữ là \(C_4^2 = 6\).

        Biến cố \(AB\) là biến cố “Hai bạn được chọn có cùng giới tính và có ít nhất một bạn nam”, đồng nghĩa với “Hai bạn được chọn là hai bạn nam”. Suy ra \(P\left( {AB} \right) = \frac{{10}}{{36}} = \frac{5}{18}\).

        Xác suất của biến cố \(B\) là \(P\left( B \right) = \frac{{36 - 6}}{{36}} = \frac{{5}}{{6}}\).

        Như vậy \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{\frac{5}{18}}}{{\frac{{5}}{{6}}}} = \frac{{1}}{{3}}\).

        Lựa chọn câu để xem lời giải nhanh hơn
        • HĐ2
        • TH3
        • VD2

        Trả lời câu hỏi Hoạt động 2 trang 70 SGK Toán 12 Chân trời sáng tạo

        Gieo đồng thời hai con xúc xắc cân đối và đồng chất. Gọi \(A\) là biến cố: “Xuất hiện hai mặt cùng số chấm”, \(B\) là biến cố: “Tổng số chấm của hai mặt xuất hiện bằng 8” và \(C\) là biến cố: “Xuất hiện ít nhất một mặt 6 chấm”.

        a) Tính \(\frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\) và \(P\left( {A|B} \right)\).

        b) Tính \(\frac{{P\left( {C \cap A} \right)}}{{P\left( A \right)}}\) và \(P\left( {C|A} \right)\).

        Phương pháp giải:

        Chỉ ra và tính lần lượt các xác suất \(P\left( {A \cap B} \right)\), \(P\left( {A|B} \right)\), \(P\left( {C \cap A} \right)\) , \(P\left( {C|A} \right)\) và tính các biểu thức đề bài yêu cầu.

        Lời giải chi tiết:

        a) Ta dễ dàng thấy các kết quả \(\left( {3;5} \right)\); \(\left( {4;4} \right)\); \(\left( {5;3} \right)\) là có lợi cho biến cố \(B\), suy ra \(P\left( B \right) = \frac{3}{{36}} = \frac{1}{{12}}\).

        Biến cố \(A \cap B\) là biến cố “Xuất hiện hai mặt cùng số chấm và tổng số chấm của hai mặt xuất hiện là 8”. Dễ dàng thấy \(\left( {4;4} \right)\) là kết quả có lợi duy nhất của biến cố này. Vậy \(P\left( {A \cap B} \right) = \frac{1}{{36}}\). Suy ra \(\frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{\frac{1}{{36}}}}{{\frac{1}{{12}}}} = \frac{1}{3}\).

        Khi biến cố \(B\) xảy ra, ta thấy chỉ có 1 kết quả có lợi cho biến cố \(A\). Như vậy \(P\left( {A|B} \right) = \frac{1}{3}\).

        b) Ta dễ dàng thấy các kết quả \(\left( {1;1} \right)\); \(\left( {2;2} \right)\); \(\left( {3;3} \right)\); \(\left( {4;4} \right)\); \(\left( {5;5} \right)\); \(\left( {6;6} \right)\) là các kết quả có lợi cho biến cố \(A\). Suy ra \(P\left( A \right) = \frac{6}{{36}} = \frac{1}{6}\).

        Biến cố \(C \cap A\) là biến cố “Xuất hiện hai mặt cùng số chấm và có ít nhất một mặt 6 chấm”. Dễ dàng thấy \(\left( {6;6} \right)\) là kết quả có lợi duy nhất của biến cố này. Vậy \(P\left( {C \cap A} \right) = \frac{1}{{36}}\). Suy ra \(\frac{{P\left( {C \cap A} \right)}}{{P\left( A \right)}} = \frac{{\frac{1}{{36}}}}{{\frac{1}{6}}} = \frac{1}{6}\).

        Khi biến cố \(A\) xảy ra, ta thấy chỉ có 1 kết quả có lợi cho biến cố \(C\). Như vậy \(P\left( {C|A} \right) = \frac{1}{6}\).

        Trả lời câu hỏi Thực hành 3 trang 72 SGK Toán 12 Chân trời sáng tạo

        Một nhóm 5 học sinh nam và 4 học sinh nữ tham gia lao động trên sân trường. Cô giáo chọn ngẫu nhiên đồng thời 2 bạn đi tưới cây. Tính xác suất để hai bạn được chọn có cùng giới tính, biết rằng có ít nhất 1 bạn nam được chọn.

        Giải mục 2 trang 70, 71, 72 SGK Toán 12 tập 2 - Chân trời sáng tạo 1

        Phương pháp giải:

        Gọi \(A\) là biến cố “Hai bạn được chọn cùng giới tính” và \(B\) là biến cố “Hai bạn được chọn có ít nhất một bạn nam”. Ta cần phải tính \(P\left( {A|B} \right)\). Tính \(P\left( {AB} \right)\) và \(P\left( B \right)\), rồi sử dụng công thức \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\) để tính \(P\left( {A|B} \right)\).

        Lời giải chi tiết:

        Gọi \(A\) là biến cố “Hai bạn được chọn cùng giới tính” và \(B\) là biến cố “Hai bạn được chọn có ít nhất một bạn nam”. Ta cần phải tính \(P\left( {A|B} \right)\).

        Số cách chọn hai bạn bất kì là \(C_9^2 = 36\).

        Số cách chọn hai bạn nam là \(C_5^2 = 10\).

        Số cách chọn hai bạn nữ là \(C_4^2 = 6\).

        Biến cố \(AB\) là biến cố “Hai bạn được chọn có cùng giới tính và có ít nhất một bạn nam”, đồng nghĩa với “Hai bạn được chọn là hai bạn nam”. Suy ra \(P\left( {AB} \right) = \frac{{10}}{{36}} = \frac{5}{18}\).

        Xác suất của biến cố \(B\) là \(P\left( B \right) = \frac{{36 - 6}}{{36}} = \frac{{5}}{{6}}\).

        Như vậy \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{\frac{5}{18}}}{{\frac{{5}}{{6}}}} = \frac{{1}}{{3}}\).

        Trả lời câu hỏi Vận dụng 2 trang 72 SGK Toán 12 Chân trời sáng tạo

        Kết quả khảo sát những bệnh nhân bị tai nạn xe máy về mối liên hệ giữa việc đội mũ bảo hiểm và khả năng bị chấn thương ở vùng đầu cho thấy:

        - Tỉ lệ bệnh nhân bị chấn thương vùng đầu khi gặp tai nạn là 80%.

        - Tỉ lệ bệnh nhân đội mũ bảo hiểm đúng cách khi gặp tai nạn là 90%.

        - Tỉ lệ bệnh nhân đội mũ bảo hiểm đúng cách bị chấn thương vùng đầu là 18%.

        Hỏi theo kết quả điều tra trên, việc đội mũ bảo hiểm đúng cách sẽ giảm khả năng bị chấn thương vùng đầu bao nhiêu lần?

        Giải mục 2 trang 70, 71, 72 SGK Toán 12 tập 2 - Chân trời sáng tạo 2

        Phương pháp giải:

        Gọi \(A\) là biến cố “Bệnh nhân bị chấn thương vùng đầu”, \(B\) là biến cố “Bệnh nhân đội mũ bảo hiểm đúng cách”. Theo đề bài, xác định \(P\left( A \right)\), \(P\left( B \right)\), \(P\left( {AB} \right)\). Sử dụng biểu thức \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\) và kết luận.

        Lời giải chi tiết:

        Gọi \(A\) là biến cố “Bệnh nhân bị chấn thương vùng đầu”, \(B\) là biến cố “Bệnh nhân đội mũ bảo hiểm đúng cách”.

        Theo đề bài, ta có \(P\left( A \right) = 80\% = 0,8\); \(P\left( B \right) = 90\% = 0,9\).

        Biến cố \[AB\] là biến cố “Bệnh nhân đội mũ bảo hiểm đúng cách bị chấn thương vùng đầu”. Theo đề bài, ta có \(P\left( {AB} \right) = 18\% = 0,18\).

        Khi biến cố \(B\) xảy ra, tức là bệnh nhân đội mũ bảo hiểm đúng cách, ta cần tính xác suất để bệnh nhân bị chấn thương vùng đầu, tức là tính \(P\left( {A|B} \right)\).

        Ta có \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,18}}{{0,9}} = 0,2\).

        Như vậy, khi đội mũ bảo hiểm đúng cách thì tỉ lệ chấn thương vùng đầu sẽ là 0,2. Suy ra việc đội mũ bảo hiểm đúng cách sẽ làm giảm khả năng chấn thương vùng đầu đi \(\frac{{0,8}}{{0,2}} = 4\) lần.

        Giải mục 2 trang 70, 71, 72 SGK Toán 12 tập 2 - Chân trời sáng tạo: Hướng dẫn chi tiết và dễ hiểu

        Mục 2 của SGK Toán 12 tập 2 Chân trời sáng tạo thường xoay quanh các chủ đề về đạo hàm, ứng dụng của đạo hàm trong việc khảo sát hàm số, hoặc các bài toán liên quan đến tích phân. Để giúp các em học sinh hiểu rõ và giải quyết các bài tập một cách hiệu quả, tusach.vn xin giới thiệu hướng dẫn giải chi tiết từng bài tập trong mục này.

        Nội dung chính của Mục 2

        Trước khi đi vào giải bài tập, chúng ta cùng điểm qua những kiến thức trọng tâm của Mục 2:

        • Khái niệm về đạo hàm: Định nghĩa, ý nghĩa hình học và vật lý của đạo hàm.
        • Các quy tắc tính đạo hàm: Quy tắc tính đạo hàm của tổng, hiệu, tích, thương, hàm hợp.
        • Đạo hàm của các hàm số thường gặp: Đạo hàm của hàm số lũy thừa, hàm số lượng giác, hàm số mũ, hàm số logarit.
        • Ứng dụng của đạo hàm: Khảo sát hàm số (xác định khoảng đồng biến, nghịch biến, cực trị, điểm uốn), giải phương trình, bất phương trình.

        Giải chi tiết các bài tập trang 70, 71, 72

        Dưới đây là lời giải chi tiết cho từng bài tập trong Mục 2, trang 70, 71, 72 SGK Toán 12 tập 2 Chân trời sáng tạo:

        Bài 1: (Trang 70)

        Đề bài: ... (Điền đề bài vào đây)

        Lời giải: ... (Điền lời giải chi tiết vào đây, bao gồm các bước giải, giải thích rõ ràng và sử dụng các công thức liên quan). Ví dụ:

        1. Bước 1: Tính đạo hàm của hàm số f(x).
        2. Bước 2: Tìm các điểm cực trị của hàm số.
        3. Bước 3: Lập bảng biến thiên của hàm số.
        4. Bước 4: Kết luận về khoảng đồng biến, nghịch biến và cực trị của hàm số.
        Bài 2: (Trang 71)

        Đề bài: ... (Điền đề bài vào đây)

        Lời giải: ... (Điền lời giải chi tiết vào đây)

        Bài 3: (Trang 72)

        Đề bài: ... (Điền đề bài vào đây)

        Lời giải: ... (Điền lời giải chi tiết vào đây)

        Lưu ý khi giải bài tập

        Để đạt kết quả tốt nhất khi giải các bài tập trong Mục 2, các em cần lưu ý những điều sau:

        • Nắm vững các khái niệm và quy tắc về đạo hàm.
        • Thực hành giải nhiều bài tập khác nhau để làm quen với các dạng bài và rèn luyện kỹ năng.
        • Sử dụng máy tính bỏ túi để kiểm tra lại kết quả.
        • Tham khảo các tài liệu tham khảo khác để hiểu sâu hơn về kiến thức.

        Tusach.vn – Đồng hành cùng các em trên con đường học tập

        Tusach.vn hy vọng rằng với hướng dẫn giải chi tiết này, các em sẽ tự tin hơn khi giải các bài tập trong Mục 2 trang 70, 71, 72 SGK Toán 12 tập 2 Chân trời sáng tạo. Nếu có bất kỳ thắc mắc nào, đừng ngần ngại liên hệ với chúng tôi để được hỗ trợ.

        Chúc các em học tập tốt!

        Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

        VỀ TUSACH.VN