1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 9 trang 62 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 9 trang 62 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 9 trang 62 sách bài tập Toán 12 Chân trời sáng tạo

Tusach.vn cung cấp lời giải chi tiết, dễ hiểu bài 9 trang 62 SBT Toán 12 Chân trời sáng tạo. Bài giải được các thầy cô giáo có kinh nghiệm biên soạn, đảm bảo tính chính xác và giúp học sinh nắm vững kiến thức.

Chúng tôi luôn cập nhật nhanh chóng và đầy đủ đáp án các bài tập trong sách bài tập Toán 12 Chân trời sáng tạo, hỗ trợ tối đa cho quá trình học tập của bạn.

Phương trình nào sau đây không phải là phương trình của một mặt cầu? A. ({x^2} + {y^2} + {z^2} + {bf{x}} - 2y + 4z - 3 = 0). B. (2{x^2} + 2{y^2} + 2{{rm{z}}^2} - {bf{x}} - y - {bf{z}} = 0). C. ({x^2} + {y^2} + {{bf{z}}^2} - 2{bf{x}} + 4y - 4z + 10 = 0). D. (2{x^2} + 2{y^2} + 2{z^2} + 4x + 8y + 6z + 3 = 0).

Đề bài

Phương trình nào sau đây không phải là phương trình của một mặt cầu?

A. \({x^2} + {y^2} + {z^2} + {\bf{x}} - 2y + 4z - 3 = 0\).

B. \(2{x^2} + 2{y^2} + 2{{\rm{z}}^2} - {\bf{x}} - y - {\bf{z}} = 0\).

C. \({x^2} + {y^2} + {{\bf{z}}^2} - 2{\bf{x}} + 4y - 4z + 10 = 0\).

D. \(2{x^2} + 2{y^2} + 2{z^2} + 4x + 8y + 6z + 3 = 0\).

Phương pháp giải - Xem chi tiếtGiải bài 9 trang 62 sách bài tập toán 12 - Chân trời sáng tạo 1

Phương trình \({x^2} + {y^2} + {z^2} - 2{\rm{ax}} - 2by - 2cz + d = 0\) là phương trình mặt cầu khi và chỉ khi \({a^2} + {b^2} + {c^2} - d > 0\).

Lời giải chi tiết

A. \(a = - \frac{1}{2},b = 1,c = - 2,d = - 3,{a^2} + {b^2} + {c^2} - d = \frac{{33}}{4} > 0\)

Vậy phương trình \({x^2} + {y^2} + {z^2} + {\bf{x}} - 2y + 4z - 3 = 0\) là phương trình mặt cầu.

B. \(2{x^2} + 2{y^2} + 2{{\rm{z}}^2} - {\bf{x}} - y - {\bf{z}} = 0 \Leftrightarrow {x^2} + {y^2} + {{\rm{z}}^2} - \frac{1}{2}{\bf{x}} - \frac{1}{2}y - \frac{1}{2}{\bf{z}} = 0\)

\(a = \frac{1}{4},b = \frac{1}{4},c = \frac{1}{4},d = 0,{a^2} + {b^2} + {c^2} - d = \frac{3}{{16}} > 0\)

Vậy phương trình \(2{x^2} + 2{y^2} + 2{{\rm{z}}^2} - {\bf{x}} - y - {\bf{z}} = 0\) là phương trình mặt cầu.

C. \(a = 1,b = - 2,c = 2,d = 10,{a^2} + {b^2} + {c^2} - d = - 1 < 0\)

Vậy phương trình \({x^2} + {y^2} + {{\bf{z}}^2} - 2{\bf{x}} + 4y - 4z + 10 = 0\) không là phương trình mặt cầu.

D. \(2{x^2} + 2{y^2} + 2{z^2} + 4x + 8y + 6z + 3 = 0 \Leftrightarrow {x^2} + {y^2} + {z^2} + 2x + 4y + 3z + 3 = 0\)

\(a = - 1,b = - 2,c = - \frac{3}{2},d = 3,{a^2} + {b^2} + {c^2} - d = \frac{{17}}{4} > 0\)

Vậy phương trình \(2{x^2} + 2{y^2} + 2{z^2} + 4x + 8y + 6z + 3 = 0\) là phương trình mặt cầu.

Chọn C.

Giải bài 9 trang 62 SBT Toán 12 Chân trời sáng tạo: Tổng quan và Phương pháp giải

Bài 9 trang 62 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào chủ đề về Đường thẳng và Mặt phẳng trong không gian. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về vectơ, phương trình đường thẳng, phương trình mặt phẳng để giải quyết các bài toán liên quan đến quan hệ vị trí giữa đường thẳng và mặt phẳng.

Nội dung chi tiết bài 9 trang 62 SBT Toán 12 Chân trời sáng tạo

Bài 9 thường bao gồm các dạng bài tập sau:

  • Xác định vị trí tương đối giữa đường thẳng và mặt phẳng: Kiểm tra xem đường thẳng có nằm trong mặt phẳng, song song với mặt phẳng, cắt mặt phẳng hay không.
  • Tìm giao điểm của đường thẳng và mặt phẳng: Sử dụng phương pháp tọa độ để tìm tọa độ giao điểm (nếu có).
  • Tính góc giữa đường thẳng và mặt phẳng: Áp dụng công thức tính góc giữa đường thẳng và mặt phẳng dựa trên vectơ chỉ phương của đường thẳng và vectơ pháp tuyến của mặt phẳng.
  • Tìm hình chiếu của đường thẳng lên mặt phẳng: Xác định phương trình đường thẳng là hình chiếu của đường thẳng ban đầu lên mặt phẳng.

Phương pháp giải bài 9 trang 62 SBT Toán 12 Chân trời sáng tạo hiệu quả

Để giải quyết bài 9 trang 62 SBT Toán 12 Chân trời sáng tạo một cách hiệu quả, bạn cần nắm vững các kiến thức sau:

  1. Vectơ: Hiểu rõ các phép toán vectơ (cộng, trừ, nhân với một số thực, tích vô hướng, tích có hướng).
  2. Phương trình đường thẳng: Biết cách viết phương trình đường thẳng dưới các dạng khác nhau (dạng tham số, dạng chính tắc, dạng tổng quát).
  3. Phương trình mặt phẳng: Biết cách viết phương trình mặt phẳng.
  4. Quan hệ vị trí giữa đường thẳng và mặt phẳng: Nắm vững các điều kiện để xác định vị trí tương đối giữa đường thẳng và mặt phẳng.

Ví dụ minh họa giải bài 9 trang 62 SBT Toán 12 Chân trời sáng tạo

Bài toán: Cho đường thẳng d: x = 1 + t, y = 2 - t, z = 3 + 2t và mặt phẳng (P): 2x - y + z - 5 = 0. Xác định vị trí tương đối giữa đường thẳng d và mặt phẳng (P).

Giải:

Vectơ chỉ phương của đường thẳng d là a = (1, -1, 2). Vectơ pháp tuyến của mặt phẳng (P) là n = (2, -1, 1).

Ta có: a.n = 1*2 + (-1)*(-1) + 2*1 = 2 + 1 + 2 = 5 ≠ 0.

Vì tích vô hướng của vectơ chỉ phương của đường thẳng và vectơ pháp tuyến của mặt phẳng khác 0, nên đường thẳng d cắt mặt phẳng (P).

Lưu ý khi giải bài tập về đường thẳng và mặt phẳng

  • Luôn vẽ hình để hình dung rõ bài toán.
  • Kiểm tra kỹ các điều kiện trước khi kết luận.
  • Sử dụng các công thức một cách chính xác.
  • Luyện tập thường xuyên để nắm vững kiến thức và kỹ năng.

Tusach.vn – Hỗ trợ học tập Toán 12 hiệu quả

Tusach.vn tự hào là địa chỉ tin cậy cung cấp lời giải chi tiết, chính xác và dễ hiểu cho các bài tập Toán 12. Chúng tôi cam kết đồng hành cùng bạn trên con đường chinh phục môn Toán. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN