1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 2 trang 22 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 2 trang 22 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 2 trang 22 sách bài tập Toán 12 Chân trời sáng tạo

Tusach.vn xin giới thiệu lời giải chi tiết bài 2 trang 22 SBT Toán 12 Chân trời sáng tạo. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cập nhật nhanh chóng và chính xác các bài giải SBT Toán 12 Chân trời sáng tạo, đáp ứng nhu cầu học tập của học sinh.

Tìm các tiệm cận của đồ thị hàm số sau: a) (y = frac{{x - 5}}{{2{rm{x}} + 1}}); b) (y = frac{{2{rm{x}}}}{{x - 3}}); c) (y = - frac{6}{{3{rm{x}} + 2}}).

Đề bài

Tìm các tiệm cận của đồ thị hàm số sau:

a) \(y = \frac{{x - 5}}{{2{\rm{x}} + 1}}\);

b) \(y = \frac{{2{\rm{x}}}}{{x - 3}}\);

c) \(y = - \frac{6}{{3{\rm{x}} + 2}}\).

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 22 sách bài tập toán 12 - Chân trời sáng tạo 1

‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn:

\(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \)

thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng.

‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang.

Lời giải chi tiết

a) Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - \frac{1}{2}} \right\}\).

Ta có:

• \(\mathop {\lim }\limits_{x \to - {{\frac{1}{2}}^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {{\frac{1}{2}}^ - }} \frac{{x - 5}}{{2{\rm{x}} + 1}} = + \infty ;\mathop {\lim }\limits_{x \to - {{\frac{1}{2}}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {{\frac{1}{2}}^ + }} \frac{{x - 5}}{{2{\rm{x}} + 1}} = - \infty \)

Vậy \(x = - \frac{1}{2}\) là tiệm cận đứng của đồ thị hàm số đã cho.

• \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{x - 5}}{{2{\rm{x}} + 1}} = \frac{1}{2};\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{x - 5}}{{2{\rm{x}} + 1}} = \frac{1}{2}\)

Vậy \(y = \frac{1}{2}\) là tiệm cận ngang của đồ thị hàm số đã cho.

b) Tập xác định: \(D = \mathbb{R}\backslash \left\{ 3 \right\}\).

Ta có:

• \(\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ - }} \frac{{2{\rm{x}}}}{{x - 3}} = - \infty ;\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ + }} \frac{{2{\rm{x}}}}{{x - 3}} = + \infty \)

Vậy \(x = 3\) là tiệm cận đứng của đồ thị hàm số đã cho.

• \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{2{\rm{x}}}}{{x - 3}} = 2;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{2{\rm{x}}}}{{x - 3}} = 2\)

Vậy \(y = 2\) là tiệm cận ngang của đồ thị hàm số đã cho.

c) Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - \frac{2}{3}} \right\}\).

Ta có:

• \(\mathop {\lim }\limits_{x \to - {{\frac{2}{3}}^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {{\frac{2}{3}}^ - }} \left( { - \frac{6}{{3{\rm{x}} + 2}}} \right) = + \infty ;\mathop {\lim }\limits_{x \to - {{\frac{2}{3}}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {{\frac{2}{3}}^ + }} \left( { - \frac{6}{{3{\rm{x}} + 2}}} \right) = - \infty \)

Vậy \(x = - \frac{2}{3}\) là tiệm cận đứng của đồ thị hàm số đã cho.

• \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \left( { - \frac{6}{{3{\rm{x}} + 2}}} \right) = - 2;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \left( { - \frac{6}{{3{\rm{x}} + 2}}} \right) = - 2\)

Vậy \(y = - 2\) là tiệm cận ngang của đồ thị hàm số đã cho.

Giải bài 2 trang 22 SBT Toán 12 Chân trời sáng tạo: Tổng quan và Phương pháp giải

Bài 2 trang 22 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung chi tiết bài 2 trang 22 SBT Toán 12 Chân trời sáng tạo

Bài 2 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Tính đạo hàm của hàm số. Yêu cầu học sinh áp dụng các quy tắc tính đạo hàm đã học để tìm đạo hàm của hàm số cho trước.
  • Dạng 2: Tìm cực trị của hàm số. Yêu cầu học sinh tìm các điểm cực trị (cực đại, cực tiểu) của hàm số bằng cách giải phương trình đạo hàm bằng 0 và xét dấu đạo hàm.
  • Dạng 3: Khảo sát sự biến thiên của hàm số. Yêu cầu học sinh xác định khoảng đồng biến, nghịch biến của hàm số dựa vào dấu của đạo hàm.
  • Dạng 4: Ứng dụng đạo hàm để giải các bài toán thực tế. Yêu cầu học sinh sử dụng đạo hàm để giải quyết các bài toán liên quan đến tối ưu hóa, tìm giá trị lớn nhất, giá trị nhỏ nhất.

Lời giải chi tiết bài 2 trang 22 SBT Toán 12 Chân trời sáng tạo

Để giúp học sinh hiểu rõ hơn về cách giải bài 2 trang 22 SBT Toán 12 Chân trời sáng tạo, chúng tôi xin trình bày lời giải chi tiết như sau:

Ví dụ: (Giả sử bài 2 là một bài toán về tìm cực trị của hàm số)

Cho hàm số y = x3 - 3x2 + 2. Tìm cực đại và cực tiểu của hàm số.

  1. Bước 1: Tính đạo hàm cấp 1: y' = 3x2 - 6x
  2. Bước 2: Tìm điểm cực trị: Giải phương trình y' = 0, ta được x = 0 hoặc x = 2.
  3. Bước 3: Lập bảng biến thiên:
    x-∞02+∞
    y'+-+
    y
  4. Bước 4: Kết luận: Hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2. Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2.

Mẹo giải bài tập đạo hàm Toán 12

  • Nắm vững các quy tắc tính đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng máy tính cầm tay để kiểm tra lại kết quả.
  • Tham khảo các tài liệu tham khảo, sách giải bài tập để hiểu rõ hơn về phương pháp giải.

Tusach.vn – Nguồn tài liệu học tập Toán 12 uy tín

Tusach.vn là một website cung cấp đầy đủ các tài liệu học tập Toán 12, bao gồm sách giáo khoa, sách bài tập, đề thi, và lời giải chi tiết. Chúng tôi cam kết cung cấp cho học sinh những tài liệu chất lượng, chính xác, và cập nhật nhất. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu hữu ích khác!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN