Tusach.vn xin giới thiệu lời giải chi tiết bài tập 12 trang 63 sách bài tập Toán 12 Chân trời sáng tạo. Bài giải được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.
Cho mặt cầu (left( S right):{left( {x - 1} right)^2} + {left( {y - 2} right)^2} + {left( {z - 3} right)^2} = 9), Điểm nào sau đây nằm ngoài mặt cầu (left( S right))? A. (Mleft( { - 1;2;5} right)). B. (Nleft( {0;3;2} right)). C. (Pleft( { - 1;6; - 1} right)). D. (Qleft( {2;4;5} right)).
Đề bài
Cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\), Điểm nào sau đây nằm ngoài mặt cầu \(\left( S \right)\)?
A. \(M\left( { - 1;2;5} \right)\).
B. \(N\left( {0;3;2} \right)\).
C. \(P\left( { - 1;6; - 1} \right)\).
D. \(Q\left( {2;4;5} \right)\).
Phương pháp giải - Xem chi tiết
Cho mặt cầu \(\left( S \right)\) có tâm \({\rm{I}}\), bán kính \({\rm{R}}\) và một điểm \(A\).
+ Nếu \(IA < R\): \(A\) nằm trong mặt cầu.
+ Nếu \(IA = R\): \(A\) nằm trên mặt cầu.
+ Nếu \(IA > R\): \(A\) nằm ngoài mặt cầu.
Lời giải chi tiết
Mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\) có tâm \({\rm{I}}\left( {1;2;3} \right)\), bán kính \(R = \sqrt 9 = 3\).
Ta có: \(IM = \sqrt {{{\left( { - 1 - 1} \right)}^2} + {{\left( {2 - 2} \right)}^2} + {{\left( {5 - 3} \right)}^2}} = 2\sqrt 2 < R\).
Vậy \(M\left( { - 1;2;5} \right)\) nằm trong mặt cầu \(\left( S \right)\).
\(IN = \sqrt {{{\left( {0 - 1} \right)}^2} + {{\left( {3 - 2} \right)}^2} + {{\left( {2 - 3} \right)}^2}} = \sqrt 3 < R\).
Vậy \(N\left( {0;3;2} \right)\) nằm trong mặt cầu \(\left( S \right)\).
\(IP = \sqrt {{{\left( { - 1 - 1} \right)}^2} + {{\left( {6 - 2} \right)}^2} + {{\left( { - 1 - 3} \right)}^2}} = 6 > R\).
Vậy \(P\left( { - 1;6; - 1} \right)\) nằm ngoài mặt cầu \(\left( S \right)\).
\(IQ = \sqrt {{{\left( {2 - 1} \right)}^2} + {{\left( {4 - 2} \right)}^2} + {{\left( {5 - 3} \right)}^2}} = 3 = R\).
Vậy \(Q\left( {2;4;5} \right)\) nằm trên mặt cầu \(\left( S \right)\).
Chọn C.
Bài 12 trang 63 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học Toán 12 tập 2, tập trung vào chủ đề Ứng dụng của tích phân trong tính diện tích. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về tích phân để tính diện tích các hình phẳng giới hạn bởi các đường cong và trục tọa độ.
Bài 12 thường bao gồm các dạng bài tập sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, Tusach.vn xin trình bày lời giải chi tiết cho từng câu hỏi trong bài 12:
(Nội dung câu a và lời giải chi tiết)
(Nội dung câu b và lời giải chi tiết)
(Nội dung câu c và lời giải chi tiết)
Để giải nhanh các bài tập tích phân tính diện tích, các em cần lưu ý những điều sau:
Tusach.vn là website chuyên cung cấp lời giải bài tập Toán học từ lớp 6 đến lớp 12. Chúng tôi cam kết cung cấp lời giải chính xác, dễ hiểu và nhanh chóng. Hãy truy cập Tusach.vn để được hỗ trợ tốt nhất trong quá trình học tập!
| Công thức | Mô tả |
|---|---|
| ∫ab f(x) dx | Tích phân xác định của hàm f(x) từ a đến b |
| |f(x)| | Giá trị tuyệt đối của hàm f(x) |
| Nguồn: Tusach.vn | |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập