1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 5 trang 77 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 5 trang 77 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 5 trang 77 Sách bài tập Toán 12 - Chân trời sáng tạo

Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài 5 trang 77, từ đó nâng cao khả năng làm bài tập và đạt kết quả tốt trong môn Toán.

Chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu nhất, kèm theo các lưu ý quan trọng để bạn có thể tự tin áp dụng vào các bài tập tương tự.

Cho ba vectơ \(\overrightarrow a = \left( { - 1;1;0} \right),\overrightarrow b = \left( {1;1;0} \right)\) và \(\overrightarrow c = \left( {1;1;1} \right)\). Trong các khẳng định sau, khẳng định nào sai? A. \(\left| {\overrightarrow a } \right| = \sqrt 2 \). B. \(\left| {\overrightarrow c } \right| = \sqrt 3 \). C. \(\overrightarrow a \bot \overrightarrow b \). D. \(\overrightarrow c \bot \overrightarrow b \).

Đề bài

Cho ba vectơ \(\overrightarrow a = \left( { - 1;1;0} \right),\overrightarrow b = \left( {1;1;0} \right)\) và \(\overrightarrow c = \left( {1;1;1} \right)\). Trong các khẳng định sau, khẳng định nào sai?

A. \(\left| {\overrightarrow a } \right| = \sqrt 2 \).

B. \(\left| {\overrightarrow c } \right| = \sqrt 3 \).

C. \(\overrightarrow a \bot \overrightarrow b \).

D. \(\overrightarrow c \bot \overrightarrow b \).

Phương pháp giải - Xem chi tiếtGiải bài 5 trang 77 sách bài tập toán 12 - Chân trời sáng tạo 1

‒ Sử dụng công thức tính độ dài của vectơ \(\overrightarrow a = \left( {x;y;z} \right)\): \(\left| {\overrightarrow a } \right| = \sqrt {{x^2} + {y^2} + {z^2}} \).

‒ \(\overrightarrow u \bot \overrightarrow v \Leftrightarrow \overrightarrow u .\overrightarrow v = 0\).

Lời giải chi tiết

\(\begin{array}{l}\left| {\overrightarrow a } \right| = \sqrt {{{\left( { - 1} \right)}^2} + {1^2} + {0^2}} = \sqrt 2 ;\left| {\overrightarrow c } \right| = \sqrt {{1^2} + {1^2} + {1^2}} = \sqrt 3 \\\overrightarrow a .\overrightarrow b = - 1.1 + 1.1 + 0.0 = 0 \Rightarrow \overrightarrow a \bot \overrightarrow b \end{array}\)

\(\overrightarrow c .\overrightarrow b = 1.1 + 1.1 + 1.0 = 2\). Do đó \(\overrightarrow c \) và \(\overrightarrow b \) không vuông góc với nhau. Vậy D sai.

Chọn D.

Giải bài 5 trang 77 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan và Hướng dẫn chi tiết

Bài 5 trang 77 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của tổng, hiệu, tích, thương và hàm hợp. Việc nắm vững các quy tắc này là nền tảng để giải quyết các bài toán phức tạp hơn trong chương trình học.

Nội dung chính của bài 5 trang 77

  • Phần 1: Tính đạo hàm của các hàm số đơn giản.
  • Phần 2: Tính đạo hàm của hàm hợp.
  • Phần 3: Vận dụng đạo hàm để giải các bài toán liên quan đến tiếp tuyến của đồ thị hàm số.

Lời giải chi tiết bài 5 trang 77

Để giúp các bạn học sinh hiểu rõ hơn về cách giải bài 5 trang 77, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi. Lưu ý rằng, trước khi bắt đầu giải bài tập, bạn cần ôn lại các kiến thức lý thuyết liên quan đến đạo hàm.

Câu a: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1

Lời giải:

f'(x) = 3x2 + 4x - 5

Giải thích: Chúng ta sử dụng quy tắc đạo hàm của tổng, hiệu và lũy thừa để tính đạo hàm của từng thành phần trong hàm số.

Câu b: Tính đạo hàm của hàm số g(x) = (x2 + 1)(x - 2)

Lời giải:

g'(x) = (2x)(x - 2) + (x2 + 1)(1) = 2x2 - 4x + x2 + 1 = 3x2 - 4x + 1

Giải thích: Chúng ta sử dụng quy tắc đạo hàm của tích để tính đạo hàm của hàm số.

Câu c: Tính đạo hàm của hàm số h(x) = sin(2x + 1)

Lời giải:

h'(x) = cos(2x + 1) * 2 = 2cos(2x + 1)

Giải thích: Chúng ta sử dụng quy tắc đạo hàm của hàm hợp.

Mẹo giải bài tập đạo hàm hiệu quả

  • Nắm vững các quy tắc đạo hàm cơ bản: Đạo hàm của tổng, hiệu, tích, thương, hàm hợp, các hàm số lượng giác, hàm mũ, hàm logarit.
  • Phân tích cấu trúc hàm số: Xác định hàm số chính và hàm số bên trong để áp dụng quy tắc đạo hàm phù hợp.
  • Thực hành thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng và làm quen với các dạng bài tập.
  • Kiểm tra lại kết quả: Sau khi tính đạo hàm, hãy kiểm tra lại kết quả bằng cách thay các giá trị cụ thể của x vào hàm số và đạo hàm để đảm bảo tính chính xác.

Tài liệu tham khảo hữu ích

Ngoài sách bài tập, bạn có thể tham khảo thêm các tài liệu sau để nâng cao kiến thức về đạo hàm:

  • Sách giáo khoa Toán 12
  • Các trang web học Toán trực tuyến
  • Các video bài giảng về đạo hàm trên YouTube

Hy vọng rằng, với lời giải chi tiết và các hướng dẫn trên, bạn sẽ tự tin giải quyết bài 5 trang 77 sách bài tập Toán 12 Chân trời sáng tạo và đạt kết quả tốt trong môn Toán. Chúc bạn học tập tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN