1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 11 trang 32 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 11 trang 32 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 11 trang 32 Sách bài tập Toán 12 Chân trời sáng tạo

Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài 11 trang 32, đồng thời cung cấp kiến thức nền tảng cần thiết để giải quyết các bài toán tương tự.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả và dễ hiểu nhất cho học sinh.

Cho hàm số (y = frac{{{x^2} + 2{rm{x}} - m}}{{x - 1}}) ((m) là tham số). a) Tìm (m) để đồ thị hàm số đã cho có hai điểm cực trị. b) Chứng tỏ rằng khi (m = 2), hàm số có hai điểm cực trị. Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số này.

Đề bài

Cho hàm số \(y = \frac{{{x^2} + 2{\rm{x}} - m}}{{x - 1}}\) (\(m\) là tham số).

a) Tìm \(m\) để đồ thị hàm số đã cho có hai điểm cực trị.

b) Chứng tỏ rằng khi \(m = 2\), hàm số có hai điểm cực trị. Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số này.

Phương pháp giải - Xem chi tiếtGiải bài 11 trang 32 sách bài tập toán 12 - Chân trời sáng tạo 1

‒ Để đồ hàm số đã cho có hai điểm cực trị thì phương trình \(y' = 0\) có hai nghiệm phân biệt.

Lời giải chi tiết

a) Tập xác định: \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).

Đạo hàm

\(\begin{array}{l}y' = \frac{{{{\left( {{x^2} + 2{\rm{x}} - m} \right)}^\prime }\left( {x - 1} \right) - \left( {{x^2} + 2{\rm{x}} - m} \right){{\left( {x - 1} \right)}^\prime }}}{{{{\left( {x - 1} \right)}^2}}}\\ = \frac{{\left( {2{\rm{x}} + 2} \right)\left( {x - 1} \right) - \left( {{x^2} + 2{\rm{x}} - m} \right)}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{{x^2} - 2{\rm{x}} + m - 2}}{{{{\left( {x - 1} \right)}^2}}}\end{array}\)

Để đồ thị hàm số đã cho có hai cực trị thì phương trình \(y' = 0\) có hai nghiệm phân biệt, tức là phương trình \({x^2} - 2{\rm{x}} + m - 2 = 0\) có hai nghiệm phân biệt khác 1.

Khi đó: \(\left\{ \begin{array}{l}\Delta ' = {\left( { - 1} \right)^2} - \left( {m - 2} \right) > 0\\{1^2} - 2.1 + m - 2 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3 - m > 0\\m - 3 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 3\\m \ne 3\end{array} \right. \Leftrightarrow m < 3\).

Vậy với \(m < 3\) thì đồ thị hàm số đã cho có hai điểm cực trị.

b) Vì \(m = 2\) thoả mãn điều kiện \(m < 3\) nên khi \(m = 2\), hàm số có hai điểm cực trị.

Với \(m = 2\) hàm số có dạng: \(y = \frac{{{x^2} + 2{\rm{x}} - 2}}{{x - 1}}\)

Đạo hàm \(y' = \frac{{{x^2} - 2{\rm{x}}}}{{{{\left( {x - 1} \right)}^2}}};y' = 0 \Leftrightarrow x = 0\) hoặc \({\rm{x}} = 2\)

Hàm số đạt cực đại tại \(x = 0\) và ${{y}_{CĐ}}=2$.

Hàm số đạt cực tiểu tại \(x = 2\) và \({y_{CT}} = 6\).

Giả sử phương trình đường thẳng đi qua hai điểm cực trị là \(y = ax + b\).

Ta có: \(\left\{ \begin{array}{l}2 = a.0 + b\\6 = a.2 + b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 2\\a = 2\end{array} \right.\)

Vậy phương trình đường thẳng đi qua hai điểm cực trị là \(y = 2x + 2\).

Giải bài 11 trang 32 Sách bài tập Toán 12 Chân trời sáng tạo: Tổng quan và Phương pháp

Bài 11 trang 32 Sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và luyện tập thường xuyên là chìa khóa để thành công trong việc giải quyết bài toán này.

Nội dung chi tiết bài 11 trang 32

Bài 11 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của một hàm số cho trước, có thể là hàm số đơn giản hoặc hàm số phức tạp.
  • Tìm đạo hàm cấp hai: Yêu cầu tìm đạo hàm cấp hai của một hàm số.
  • Ứng dụng đạo hàm để giải quyết các bài toán thực tế: Ví dụ như tìm điểm cực trị, khoảng đơn điệu, giá trị lớn nhất, giá trị nhỏ nhất của hàm số.

Lời giải chi tiết bài 11 trang 32

Để giúp bạn hiểu rõ hơn, chúng tôi sẽ trình bày lời giải chi tiết cho từng phần của bài 11 trang 32:

Ví dụ 1: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1

Lời giải:

f'(x) = 3x2 + 4x - 5

Ví dụ 2: Tìm đạo hàm cấp hai của hàm số g(x) = sin(x)

Lời giải:

g'(x) = cos(x)

g''(x) = -sin(x)

Mẹo giải bài tập đạo hàm hiệu quả

Để giải quyết các bài tập về đạo hàm một cách hiệu quả, bạn nên:

  1. Nắm vững các công thức đạo hàm cơ bản: Đạo hàm của các hàm số đơn giản như xn, sin(x), cos(x), ex, ln(x).
  2. Thành thạo các quy tắc tính đạo hàm: Quy tắc cộng, trừ, nhân, chia, quy tắc chuỗi.
  3. Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để làm quen với các dạng bài và rèn luyện kỹ năng.
  4. Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Tài liệu tham khảo hữu ích

Ngoài sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 12
  • Các trang web học toán trực tuyến
  • Các video hướng dẫn giải bài tập toán

Kết luận

Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải quyết bài 11 trang 32 Sách bài tập Toán 12 Chân trời sáng tạo một cách hiệu quả. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!

Công thứcĐạo hàm
f(x) = xnf'(x) = nxn-1
f(x) = sin(x)f'(x) = cos(x)

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN