1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 12 trang 12 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 12 trang 12 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 12 trang 12 Sách bài tập Toán 12 - Chân trời sáng tạo

Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài 12 trang 12, đồng thời cung cấp kiến thức nền tảng cần thiết để giải quyết các bài toán tương tự.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả và dễ dàng tiếp cận nhất cho học sinh.

Cho điểm \(A\) di động trên nửa đường tròn tâm \(O\) đường kính \(MN = 20{\rm{ }}cm,\widehat {MOA} = \alpha \) với \(0 \le \alpha \le \pi \). Lấy điểm \(B\) thuộc nửa đường tròn và \(C,D\) thuộc đường kính \(MN\) được xác định sao cho \(ABCD\) là hình chữ nhật. Khi \(A\) di động từ trái sang phải, trong các khoảng nào của \(\alpha \) thì diện tích của hình chữ nhật \(ABCD\) tăng, trong các khoảng nào của \(\alpha \) thì diện tích của hình chữ nhật \(ABCD\) giảm?

Đề bài

Cho điểm \(A\) di động trên nửa đường tròn tâm \(O\) đường kính \(MN = 20{\rm{ }}cm,\widehat {MOA} = \alpha \) với \(0 \le \alpha \le \pi \). Lấy điểm \(B\) thuộc nửa đường tròn và \(C,D\) thuộc đường kính \(MN\) được xác định sao cho \(ABCD\) là hình chữ nhật. Khi \(A\) di động từ trái sang phải, trong các khoảng nào của \(\alpha \) thì diện tích của hình chữ nhật \(ABCD\) tăng, trong các khoảng nào của \(\alpha \) thì diện tích của hình chữ nhật \(ABCD\) giảm?

Giải bài 12 trang 12 sách bài tập toán 12 - Chân trời sáng tạo 1

Phương pháp giải - Xem chi tiếtGiải bài 12 trang 12 sách bài tập toán 12 - Chân trời sáng tạo 2

Lập hàm số \(y = f\left( \alpha \right)\) trên đoạn \(\left[ {0;\pi } \right]\), lập bảng biến thiên và tìm khoảng đồng biến, nghịch biến của hàm số.

Lời giải chi tiết

Ta có: \(A{\rm{D}} = OA\sin \alpha = 10\sin \alpha ;O{\rm{D}} = OA\cos \alpha = 10\cos \alpha ;C{\rm{D}} = 2{\rm{OD}} = 20\cos \alpha \).

Diện tích hình chữ nhật là: \(AD.C{\rm{D}} = 10\sin \alpha .20\cos \alpha = 200\sin \alpha \cos \alpha = 100\sin 2\alpha \).

Xét hàm số \(f\left( \alpha \right) = 100\sin 2\alpha \) trên đoạn \(\left[ {0;\pi } \right]\).

Ta có:

\(f'\left( \alpha \right) = 200\cos 2\alpha ;f'\left( \alpha \right) = 0 \Leftrightarrow \alpha = \frac{\pi }{4}\) hoặc \(\alpha = \frac{{3\pi }}{4}\).

Bảng biến thiên:

Giải bài 12 trang 12 sách bài tập toán 12 - Chân trời sáng tạo 3

Vậy hàm số đồng biến trên các khoảng \(\left( {0;\frac{\pi }{4}} \right)\) và \(\left( {\frac{{3\pi }}{4};\pi } \right)\), hàm số nghịch biến trên khoảng \(\left( {\frac{\pi }{4};\frac{{3\pi }}{4}} \right)\).

Vậy diện tích hình chữ nhật tăng trên các khoảng \(\left( {0;\frac{\pi }{4}} \right)\) và \(\left( {\frac{{3\pi }}{4};\pi } \right)\), diện tích hình chữ nhật giảm trên khoảng \(\left( {\frac{\pi }{4};\frac{{3\pi }}{4}} \right)\).

Giải bài 12 trang 12 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan và Hướng dẫn chi tiết

Bài 12 trang 12 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của tổng, hiệu, tích, thương và hàm hợp. Việc nắm vững các quy tắc này là nền tảng quan trọng để giải quyết bài toán này và các bài toán tương tự trong chương trình học.

Nội dung chính của bài 12 trang 12

Bài 12 thường yêu cầu học sinh:

  • Tính đạo hàm của các hàm số phức tạp.
  • Áp dụng quy tắc đạo hàm để giải các bài toán thực tế.
  • Phân tích và đánh giá kết quả đạo hàm.

Lời giải chi tiết bài 12 trang 12

Để giải bài 12 trang 12, chúng ta cần thực hiện các bước sau:

  1. Xác định hàm số cần tính đạo hàm: Đọc kỹ đề bài để xác định chính xác hàm số cần tính đạo hàm.
  2. Áp dụng quy tắc đạo hàm: Sử dụng các quy tắc đạo hàm đã học để tính đạo hàm của hàm số.
  3. Rút gọn biểu thức: Rút gọn biểu thức đạo hàm để có kết quả cuối cùng.
  4. Kiểm tra lại kết quả: Kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa:

Giả sử hàm số cần tính đạo hàm là: f(x) = 2x3 + 5x2 - 3x + 1

Áp dụng quy tắc đạo hàm, ta có:

f'(x) = 6x2 + 10x - 3

Các dạng bài tập tương tự và phương pháp giải

Ngoài bài 12 trang 12, còn rất nhiều bài tập tương tự trong sách bài tập Toán 12 Chân trời sáng tạo. Để giải quyết các bài tập này, bạn cần:

  • Nắm vững lý thuyết: Hiểu rõ các định nghĩa, định lý và quy tắc đạo hàm.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng.
  • Sử dụng các công cụ hỗ trợ: Sử dụng máy tính bỏ túi hoặc các phần mềm tính toán để kiểm tra kết quả.

Mẹo giải nhanh bài tập đạo hàm

Để giải nhanh các bài tập đạo hàm, bạn có thể áp dụng một số mẹo sau:

  • Sử dụng bảng đạo hàm: Tham khảo bảng đạo hàm để nhanh chóng tìm ra đạo hàm của các hàm số cơ bản.
  • Phân tích cấu trúc hàm số: Phân tích cấu trúc hàm số để chọn quy tắc đạo hàm phù hợp.
  • Rút gọn biểu thức trước khi tính đạo hàm: Rút gọn biểu thức trước khi tính đạo hàm có thể giúp đơn giản hóa bài toán.

Tài liệu tham khảo hữu ích

Để học tốt môn Toán 12, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 Chân trời sáng tạo
  • Sách bài tập Toán 12 Chân trời sáng tạo
  • Các trang web học Toán trực tuyến
  • Các video bài giảng Toán 12

Kết luận:

Bài 12 trang 12 sách bài tập Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp bạn rèn luyện kỹ năng tính đạo hàm. Hy vọng với hướng dẫn chi tiết và các mẹo giải nhanh trên, bạn sẽ tự tin giải quyết bài tập này và các bài tập tương tự trong chương trình học. Chúc bạn học tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN