Chào mừng bạn đến với lời giải chi tiết bài 17 trang 64 sách bài tập Toán 12 Chân trời sáng tạo. Tusach.vn cung cấp đáp án chính xác, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập Toán 12.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất cho học sinh. Hãy cùng khám phá lời giải chi tiết ngay dưới đây!
Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho mặt cầu (left( S right):{left( {x - 1} right)^2} + {left( {y - 3} right)^2} + {left( {z + 2} right)^2} = 9). a) (left( S right)) có tâm (Ileft( { - 1; - 3;2} right)). b) (left( S right)) có bán kính (R = 9). c) Điểm (Oleft( {0;0;0} right)) nằm ngoài mặt cầu (left( S right)). d) Điểm (Mleft( {1;3;1} right)) nằm trên mặt cầu (left( S right)).
Đề bài
Chọn đúng hoặc sai cho mỗi ý a, b, c, d.
Cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 2} \right)^2} = 9\).
a) \(\left( S \right)\) có tâm \(I\left( { - 1; - 3;2} \right)\).
b) \(\left( S \right)\) có bán kính \(R = 9\).
c) Điểm \(O\left( {0;0;0} \right)\) nằm ngoài mặt cầu \(\left( S \right)\).
d) Điểm \(M\left( {1;3;1} \right)\) nằm trên mặt cầu \(\left( S \right)\).
Phương pháp giải - Xem chi tiết
‒ Mặt cầu \(\left( S \right):{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\) có tâm \(I\left( {a;b;c} \right)\) bán kính \(R\).
‒ Cho mặt cầu \(\left( S \right)\) có tâm \({\rm{I}}\), bán kính \({\rm{R}}\) và một điểm \(A\).
+ Nếu \(IA < R\): \(A\) nằm trong mặt cầu.
+ Nếu \(IA = R\): \(A\) nằm trên mặt cầu.
+ Nếu \(IA > R\): \(A\) nằm ngoài mặt cầu.
Lời giải chi tiết
Mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 2} \right)^2} = 9\) có tâm \(I\left( {1;3; - 2} \right)\) bán kính \(R = \sqrt 9 = 3\). Vậy a) sai, b) sai.
Ta có \(OI = \sqrt {{1^2} + {3^2} + {{\left( { - 2} \right)}^2}} = \sqrt {14} > R\) nên điểm \(O\left( {0;0;0} \right)\) nằm ngoài mặt cầu \(\left( S \right)\). Vậy c) đúng.
\(MI = \sqrt {{{\left( {1 - 1} \right)}^2} + {{\left( {3 - 3} \right)}^2} + {{\left( { - 2 - 1} \right)}^2}} = 3 = R\) nên điểm \(M\left( {1;3;1} \right)\) nằm trên mặt cầu \(\left( S \right)\). Vậy d) đúng.
a) S.
b) S.
c) Đ.
d) Đ.
Bài 17 trang 64 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào chủ đề về Đường thẳng và mặt phẳng trong không gian. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về vectơ chỉ phương, vectơ pháp tuyến, phương trình đường thẳng, phương trình mặt phẳng để giải quyết các bài toán liên quan đến vị trí tương quan giữa đường thẳng và mặt phẳng.
Bài 17 thường bao gồm các dạng bài tập sau:
Để giải quyết hiệu quả bài 17 trang 64 SBT Toán 12 Chân trời sáng tạo, bạn cần nắm vững các kiến thức sau:
(Ở đây sẽ là lời giải chi tiết cho từng câu hỏi của bài 17. Ví dụ:)
Câu a: Cho đường thẳng d: x = 1 + t, y = 2 - t, z = 3 + 2t và mặt phẳng (P): 2x - y + z - 5 = 0. Chứng minh rằng đường thẳng d song song với mặt phẳng (P).
Lời giải:
Vectơ chỉ phương của đường thẳng d là a = (1, -1, 2). Vectơ pháp tuyến của mặt phẳng (P) là n = (2, -1, 1). Ta có a.n = 1*2 + (-1)*(-1) + 2*1 = 5 ≠ 0. Do đó, đường thẳng d không vuông góc với mặt phẳng (P). Tuy nhiên, để chứng minh d song song với (P), ta cần kiểm tra xem d có điểm nào thuộc (P) hay không. Thay x = 1 + t, y = 2 - t, z = 3 + 2t vào phương trình (P), ta được: 2(1 + t) - (2 - t) + (3 + 2t) - 5 = 2 + 2t - 2 + t + 3 + 2t - 5 = 5t - 2 = 0. Phương trình này có nghiệm t = 2/5. Vậy, đường thẳng d cắt mặt phẳng (P) tại điểm có tọa độ (3/5, 8/5, 19/5). Do đó, kết luận d song song với (P) là sai.
Để củng cố kiến thức và kỹ năng giải bài tập về đường thẳng và mặt phẳng trong không gian, bạn nên luyện tập thêm các bài tập tương tự trong sách bài tập Toán 12 Chân trời sáng tạo và các đề thi thử Toán 12.
Tusach.vn luôn cập nhật lời giải chi tiết và chính xác cho các bài tập Toán 12. Hãy truy cập tusach.vn để tìm kiếm lời giải cho các bài tập khác và nâng cao kiến thức của bạn!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập