Bài 19 trang 79 SBT Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
tusach.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 19, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Chọn đúng hoặc sai cho mỗi ý a, b, c, d Cho một lực (overrightarrow F = left( {4;6;9} right)) (đơn vị: (N)) thực hiện một độ dịch chuyển (overrightarrow d = left( {20;50;10} right)) (đơn vị: m). a) Cường độ của lực (overrightarrow F ) là (sqrt {133} N). b) Độ dài quãng đường dịch chuyển là (10sqrt {30} m). c) Công sinh bởi lực (overrightarrow F ) khi thực hiện độ dời (overrightarrow d ) là (10sqrt {3990} J). d) (cos left( {overrightarrow F ,overright
Đề bài
Chọn đúng hoặc sai cho mỗi ý a, b, c, d
Cho một lực \(\overrightarrow F = \left( {4;6;9} \right)\) (đơn vị: \(N\)) thực hiện một độ dịch chuyển \(\overrightarrow d = \left( {20;50;10} \right)\) (đơn vị: m).
a) Cường độ của lực \(\overrightarrow F \) là \(\sqrt {133} N\).
b) Độ dài quãng đường dịch chuyển là \(10\sqrt {30} m\).
c) Công sinh bởi lực \(\overrightarrow F \) khi thực hiện độ dời \(\overrightarrow d \) là \(10\sqrt {3990} J\).
d) \(\cos \left( {\overrightarrow F ,\overrightarrow d } \right) = \frac{{470}}{{10\sqrt {3990} }}\).
Phương pháp giải - Xem chi tiết
‒ Sử dụng công thức tính độ dài của vectơ \(\overrightarrow a = \left( {x;y;z} \right)\): \(\left| {\overrightarrow a } \right| = \sqrt {{x^2} + {y^2} + {z^2}} \).
‒ Sử dụng công thức tính tích vô hướng của hai vectơ \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\):
\(\overrightarrow u .\overrightarrow v = {x_1}.{x_2} + {y_1}.{y_2} + {z_1}.{z_2}\).
‒ Sử dụng công thức tính góc giữa hai vectơ \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\):
\(\cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}} = \frac{{{x_1}.{x_2} + {y_1}.{y_2} + {z_1}.{z_2}}}{{\sqrt {x_1^2 + y_1^2 + z_1^2} .\sqrt {x_2^2 + y_2^2 + z_2^2} }}\).
Lời giải chi tiết
Cường độ của lực \(\overrightarrow F \) là: \(F = \left| {\overrightarrow F } \right| = \sqrt {{4^2} + {6^2} + {9^2}} = \sqrt {133} N\). Vậy a) đúng.
Độ dài quãng đường dịch chuyển là \(d = \left| {\overrightarrow d } \right| = \sqrt {{{20}^2} + {{50}^2} + {{10}^2}} = 10\sqrt {30} m\). Vậy b) đúng.
Công sinh bởi lực \(\overrightarrow F \) khi thực hiện độ dời \(\overrightarrow d \) là : \(A = \overrightarrow F .\overrightarrow d = 4.20 + 6.9 + 9.10 = 470J\). Vậy c) sai.
\(\cos \left( {\overrightarrow F ,\overrightarrow d } \right) = \frac{{\overrightarrow F .\overrightarrow d }}{{\left| {\overrightarrow F } \right|.\left| {\overrightarrow d } \right|}} = \frac{{470}}{{\sqrt {133} .10\sqrt {30} }} = \frac{{470}}{{10\sqrt {3990} }}\). Vậy d) đúng.
a) Đ.
b) Đ.
c) S.
d) Đ.
Bài 19 trang 79 Sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các bài toán liên quan đến việc tìm đạo hàm, xét dấu đạo hàm và khảo sát hàm số.
Bài tập 19 thường bao gồm các dạng bài sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, tusach.vn xin trình bày lời giải chi tiết cho từng câu hỏi:
(Giả sử đây là nội dung câu a của bài tập 19, ví dụ: Tìm đạo hàm của hàm số f(x) = x^3 - 3x^2 + 2x)
Lời giải:
f'(x) = 3x^2 - 6x + 2
(Giả sử đây là nội dung câu b của bài tập 19, ví dụ: Xác định khoảng đơn điệu của hàm số f(x) = x^3 - 3x^2 + 2x)
Lời giải:
Để xác định khoảng đơn điệu, ta xét dấu f'(x). Giải phương trình f'(x) = 0, ta được x = (3 ± √3)/3. Lập bảng xét dấu f'(x), ta có:
| x | -∞ | (3 - √3)/3 | (3 + √3)/3 | +∞ |
|---|---|---|---|---|
| f'(x) | + | - | + | |
| f(x) | ↗ | ↘ | ↗ |
Vậy hàm số đồng biến trên các khoảng (-∞; (3 - √3)/3) và ((3 + √3)/3; +∞), nghịch biến trên khoảng ((3 - √3)/3; (3 + √3)/3).
tusach.vn là website chuyên cung cấp lời giải bài tập Toán 12, với đội ngũ giáo viên giàu kinh nghiệm và phương pháp giải dễ hiểu, giúp các em học sinh:
Hãy truy cập tusach.vn ngay hôm nay để được hỗ trợ giải bài tập Toán 12!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập